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ABSTRACT

Objective. The goal of this study was to determine the accuracy and bias of direct genomic values (DGV) using imputed 
genotypes at medium density in yield- and reproduction-related traits for Holstein cattle from Antioquia, Colombia. 
Materials and Methods. A total of 31 animals were genotyped with the Illumina BovineLD chip, 64 with Illumina 
BovineSNP50v2 and 48 with Illumina BovineHD. Two SNP panels (6K and 40K) were imputed to a density of 44K using 
the FINDHAP.f90 v4 program. The effects of the SNPs were estimated using the Bayes C method, using low-density 
(6K) genotypes as well as medium-density imputed genotypes (44_imputed). The accuracy and bias of the DGVs were 
determined by cross-validation. The evaluated traits were: milk yield (MY), percentage of protein (PP), percentage of 
fat (PF), somatic cell score (SCS), calving interval (CI) and open days (OD). Results. When using the 6K panel, the 
accuracy values for DGV (rpDGV;EBV) in all the studied traits ranged from 0.19 to 0.24, and the bias (bDGV;EBV) from 0.03 
to 0.16. In contrast, using the 44K_imputed panel generated higher accuracy values ranging from 0.24 to 0.33 and a 
bias ranging from 0.03 to 0.26. Conclusions. The accuracy of prediction the DGV was higher with genotypes imputed 
to medium densities when compared to the accuracy of prediction obtained using low-density genotypes. Therefore, 
in this study it is concluded that the imputation of genotypes is very useful, because it improves the reliability of the 
genomic evaluation.

Keywords: Genotyping, genomic selection, single nucleotide polymorphism (Source: CAB, NAL). 

RESUMEN

Objetivo. El objetivo de este estudio fue determinar la precisión y el sesgo de predicción de valores genómicos directos 
(VGD) usando genotipos imputados a densidad media, en características productivas y reproductivas en ganado 
Holstein de Antioquia, Colombia. Materiales y métodos. Fueron genotipificados 31 animales con el chip Illumina 
BovineLD, 64 con el chip Illumina BovineSNP50v2 y 48 con el chip Illumina BovineHD. La imputación se realizó usando 
dos paneles de SNPs (6K y 40K) a una densidad 44K, usando el programa FINDHAP.f90 v4. Los efectos de los SNPs 
fueron estimados mediante el método bayes C, usando genotipos de baja densidad (6K) y genotipos imputados a 
una densidad media (44_imputado). La precisión y el sesgo de los VGDs fueron determinados mediante validación 
cruzada. Las características evaluadas fueron: producción de leche (PL), porcentaje de proteína (PRO), porcentaje de 
grasa (GRA), puntaje de células somáticas (SCS), intervalo entre partos (IEP) y días abiertos (DA). Resultados. Las 
precisiones de VGD (rpVGD;EBV) en todas las características evaluadas oscilaron entre 0.19 y 0.24 y el sesgo (bVGD;EBV) 
entre 0.03 y 0.16 cuando se usó el panel 6K y usando el panel 44K_imputado las precisiones fueron mayores, oscilado 
entre 0.24 y 0.33 y sesgo entre 0.03 y 0.26. Conclusiones. La precisión de predicción de los VGDs fue mayor cuando 
se usaron genotipos imputados a densidad media, en comparación con la precisión de predicción obtenida empleando 
genotipos de baja densidad. Por lo cual, en este estudio se concluye que la imputación de genotipos es muy útil dado 
que aumenta la confiabilidad de la evaluación genómica.

Palabras clave: Genotipificación, polimorfismo de nucleótido simple, selección genómica (Fuente: CAB, NAL). 
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INTRODUCTION

Genomic selection (GS) is a methodology that includes 
thousands of molecular markers that cover the entire 
genome evenly so that each QTL associated with a 
particular trait is in linkage disequilibrium with at least 
one marker (1,2). This methodology combines the 
information from phenotypes (or pseudophenotypes: 
EBVs), pedigree and genotype of each animal in order to 
estimate genomic breeding values (GEBVs), which are the 
focus of the current genetic improvement schemes (3). 
This has created new opportunities for a more efficient 
selection even for traits that have low heritability or are 
difficult to measure (4,5).

However, the greatest obstacle for the implementation of 
GS is the cost of animal genotyping, mainly with moderate 
and high-density chips (4). To reduce genotyping costs, 
one strategy is to use low-density SNP chips, which can 
be optimized through imputation processes.  Genotyping 
strategies for imputation generally involve featured 
animals, mainly males that have been genotyped with 
high density chips (Illumina SNP50, Illumina BovineHD 
800K), young animals (candidates for selection) and 
cows, using low density chips (Illumina BovineLD) 
and in some cases non-genotyped individuals (6,7,8). 
Genotype imputation begins with the reconstruction 
of the haplotypes carried by the individuals that have 
been genotyped with high density chips. Low density 
genotypes were then used in conjunction with pedigree, 
family linkage and linkage disequilibrium information to 
determine the combination of haplotypes present in the 
individuals that had been genotyped with low density 
chips and thus deduce their genotype until reaching an 
SNPs density greater than the initial (8).

A number of imputation programs have been proposed: 
fastPHASE (9), BEAGLE (10), IMPUTE2 (11), FINDHAP 
(12), FImpute (13), etc. All of them use different methods 
for reconstructing haplotypes, thus their computing times 
are different. FastPHASE, BEAGLE and IMPUTE2 are slow, 
as they use Bayesian methods that may be limiting in 
practice when large amounts of data are used. FINDHAP 
and FImpute use deterministic methods that are very 
fast computationally and their imputation accuracies are 
comparable to those produced by fastPHASE, BEAGLE e 
IMPUTE2 (6,14). Genotype imputation in genetic selection 
has made it possible to calculate GEBVs in bulls and cows. 
This has reliability values similar to those obtained when 
the animals are genotyped with high density chips (6,14). 
This has favored the implementation of GS in genetic 
improvement programs, making this methodology more 
reliable, efficient and less costly (5,15,16). 

Although in Colombia there is a high level of technification 
in specialized dairy cattle, genetic improvement has 
presented serious difficulties, due to the limited amount 
of productive records available (17). However, this has not 
been an impediment to start with the implementation of 
methodologies that include genomic information in both 
dairy cattle (18,19), in Creole breeds (20), as well as 
beef cattle (21). The goal of this research project was to 
determine the accuracy and bias of direct genomic values 
(DGV) using genotypes imputed to medium density for 
yield- and reproduction-related traits for Holstein cattle 
from Antioquia, Colombia.

MATERIALS AND METHODS

Population. This study was conducted based on the 
information obtained from 85 dairy Holstein herds 
located in 18 municipalities from the Department of 
Antioquia (Colombia) whose forest zones belong to the 
lower montane wet forest (lmwf) category and have a 
temperature ranging from 12 to 18ºC and an average 
annual precipitation between 2000 and 4000 mm. They 
normally cover an altitudinal belt of 1800 to 2800 masl. 
The animal management, feeding and health conditions 
varied for every herd. This was also true for their 
topography and location.

The number of records used for the analyses varied 
depending on the trait being analyzed: there were 8772, 
6624, 6595, 6426, 11562 and 11395 for milk yield 
(MY), percentage of protein (PP), percentage of fat (PF), 
somatic cell count (SCC), calving interval (CI) and open 
days (OD), respectively. The SCC was transformed into a 
somatic cell score (SCS) through the following equation: 
SCS=[log2 (RCS/100000)] + 3 in order to improve data 
normality, as described by Ali and Shook (22). For the 
conventional genetic evaluation, the number of animals 
in the pedigree was 9090 (721 fathers and 944 mothers). 
For the genomic evaluation, this number was 144 (36 
bulls and 108 cows).

Animal Genotyping Using High Density Chips. A total 
of 144 animals were genotyped with three Illumina chips 
(Illumina Inc, San Diego, CA), namely:  Bovine LD (31 
animals), BovineSNP50 v2 (65 animals) and BovineHD 
(48 animals). After submitting the genotypes to a quality 
control process that included the following conditions: 
call rate >0.90, minor allele frequency (MAF) >0.02, 
Hardy Weinberg equilibrium p>0.001 and discarding of 
markers with Mendelian errors, a total of 6716 markers 
were obtained that were common to the three chips, their 
density was labeled 6K. Genotype editing was performed 
using SAS v9.2 (SAS Institute Inc., Cary, E.E.U.U.) and 
PLINK v1.07 (CHGR., Massachusetts, E.E.U.U.) programs.

Genotype Imputation. To obtain the database 
containing the imputed genotypes, 6820 SNPs (panel 
7K) from the LD chip were selected together with 40321 
SNPs (panel 40K) from the HD chip. These SNPs were 
common to the SNP50v2 chip. In addition, panels 7K and 
40K were imputed to 44224 SNPs (panel 44K_imputed). 
The SNPs were defined as discrete genotypes (0, 1 and 
2), thus they were recoded as: BB=0 (homozygous for the 
first allele), AB=1 (heterozygous), AA=2 (homozygous 
for the second allele), B_=3 (known paternal allele and 
unknown maternal allele), _A=4 (unknown paternal 
allele and known maternal allele) and 5 when both 
alleles are unknown. The SNPs were sorted by number of 
chromosomes and by location in the chromosome while 
taking into account the UMD3.1 assembly of the bovine 
genome. The pedigree of the 144 genotyped animals, 
which corresponded to 761 individuals, was included in 
the analysis in order to improve imputation accuracy.

The accuracy of the imputations was determined by 
comparing the imputed genotypes (IG) with the true 
genotypes (TG) (i.e. genotypes obtained with the 
SNP50v2 chip), using the Pearson correlation (rTG;IG). The 
imputation process was carried out using the FINDHAP.
f90 version 4 program (USDA., Beltsville, E.E.U.U.).

http://chgr.mgh.harvard.edu
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Estimation of the Effects of the Markers and Direct 
Genomic Values. The effects of SNPs were estimated 
using the Bayes C method (23). The general statistical 
model was described as:

Where: y is the vector of phenotypic values corrected by 
fixed effects (which corresponds to the conventional EBVs 
obtained through the BLUP method) for the following 
traits: MY, SCS, PP, PF, OD and CI; m is the general 
mean; 1n is the vector of ones with a length of n; Xij 
is the column vector representing the covariable of the 
marker (SNP) in locus j for animal i. For each jth marker, 
there are three possible combinations with two alleles 
(A or B): homozygous with an allele (BB), heterozygous 
(AB) and homozygous with the other allele (AA). These 
combinations of alleles (genotypes) are quantitatively 
represented as 0, 1 and 2 respectively (i.e. Xij= 0, 1 
or 2), gj is the random effect of allelic substitution for 
marker j, which is conditional on s2

g and is assumed to 
have a normal distribution N~(0, s2

g) when dj=1, but 
gj=0 when dj=0. dj it is a 0/1 random variable indicating 
the absence (with a likelihood of p) or presence (with a 
likelihood of 1-p) of the j locus in the model; u is the 
vector of polygenic random effects with a length of n (Z 
being the associated design matrix) and was considered 
as the fit of the genes that were not taken into account 
by the effects of the jth SNPs in g; u is assumed to have 
a normal distribution, u ~ N(0, A s 2u ), where A is the  
relationship matrix derived from the pedigree of the 
genotyped animals, e is the residual, also assumed to 
have a normal distribution, e ~ N(0, I s 2e 

), where I is an 
nxn identity matrix. 

Thus, the Bayes C method assumes a mixture of two 
distributions for the effects of the SNPs. In the first 
distribution, (whose likelihood is π) it is established that 
many markers do not have any effect or variance; in the 
second, (whose likelihood is 1- p) there are markers with 
effect and a variance that is common to all SNPs (24).

Thus, the effects of the SNPs (gj) follow an a priori normal 
distribution with a mean of zero and a variance of (s2

g), 
whereas the variance of the effects of the markers (s2

g) 
follow an a priori scaled inverse chi-squared distribution 
with parameters ng (degrees of freedom) and S2

g  (scale 
parameter). On the other hand, π is treated as a uniform 
a priori distribution whose mean is zero and its variance 
1 (24), as described in the following paragraphs:

2222 ~| −χnns ggggg SS
)1,0(~ uniformep

The DGV of the animals with a known genotype was 
determined as:

∑
=

=
p

i
jjij gXy

1

ˆ d

Where: 
corresponds to the sum of all the effects of the estimated 
SNPs (ĝj). The program used for estimating the effects 
of the SNPs and the DGVs was GS3 (INRA., Toulouse, 
Francia).

Cross-validation. The accuracy of the genomic selection 
was determined by cross-validation as described by 
Meuwissen et al. (25). The complete database, which 
corresponds to 144 animals with known phenotypes 
and genotypes was split randomly into S=12 equally 
sized groups (S1-S12). In the first stage, S1 was the 
validation group; animals in this group had genotype but 
no phenotype as it had been removed from the database 
(masked phenotype = 0). Groups S2 through S12 were 
used as a reference (i.e. they had both phenotype and 
genotype) to estimate the effects of the SNPs. For S1 the 
DGVs of the 12 animals in the group were estimated using 
the effects of the SNPs estimated for the 132 remaining 
animals (S2-S12). This was repeated for all groups. At the 
end, the DGVs were estimated for all animals.

Accuracy and Bias of the predicted DGV. The DGVs 
estimated using the Bayes C method were compared 
with the conventional (EBV) through Pearson correlation, 
which was in turn considered as the accuracy of the 
genomic selection (26). The equation appears as follows:

yx
p

yxCOVr
ss

),(
=

Where, rp = Pearson correlation coefficient, x=DGV 
for trait i, y = conventional EBV for trait i. Similarly, 
Spearman’s rank correlation coefficient was also 
estimated. This coefficient was used to determine the 
degree of similarity between the rankings of the animals 
according to their genomic values (DGV or GEBV) and 
according to their conventional EBV.

The equation utilized was described as:

)1(
6

1 2

2

−
−= ∑

NN
D

rs

Where:
D = difference between the corresponding genetic values 
of order (x–y), x = DGV, y = conventional EBV, N=number 
of pairs (x,y) and rs = Spearman’s correlation coefficient. 
A correlation value of 1 indicates that ranking the animals 
based on their genetic values (DGV or conventional EBV) 
produces similar results.

Finally, the linear regression coefficient of the conventional 
EBVs on the DGVs (bDGV;EBV) was determined. The bDGV;EBV 
was considered as a bias for the prediction of DGV. The 
linear regression was defined as:

exbby ii ++= 10

Where yi = dependent variable corresponding to 
the conventional EBV for trait i; xi = DGV for trait i; 
b1=regression coefficient of the conventional EBV on the 
DGV; b0 = intercept and e = residual.
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RESULTS

Descriptive Analysis for Yield-and Reproduction-
related traits.  The averages for the following 
reproduction- and yield-related traits were determined: 
CI and OD (Table 1), MY, PP, PF and SCS.  These are 
normal results for the Holstein breed under the conditions 
of the colombian high tropics. On the other hand, 
the heritability estimated by the conventional genetic 
evaluation for yield-related traits (PF, PP, MY and SCS) 
was moderate as its values were 0.33, 0.41, 0.30 and 
0.27 respectively; in contrast, this value was low for the 
reproduction-related traits, CI and OD, as the value was 
0.11 for both cases.

Table 1.	 Descriptive analysis for yield- and reproduction-related 
traits of Holstein cattle from Antioquia, Colombia.

Trait N Mean±SD h2 (SE)

MY 8772 5400±2126 0.30(0.017)

PP 6624 3.10±0.31 0.33(0.020)

PF 6595 3.97±0.55 0.41(0.019)

SCS 6426 4.62±1.37 0.27(0.021)

CI 11562 410±78 0.11(0.011)

OD 11395 127±77 0.11(0.011)

MY - milk yield (in Liters/lactation), PF - percentage of fat, PP - percentage 
of protein, SCS - somatic cell score, CI - calving interval, OD - open days, 
N - number of records, SD - standard deviation, h2 –heritability, SE – 
Standard error.

Imputation Accuracy. The 7K database, composed of 
31 animals was imputed to 44K, obtaining an accuracy 
of 0.73. Similarly, the 40K database, composed of 48 
animals, was imputed to 44K with an accuracy of 0.97 
(Table 2). 

Table 2. Accuracy values for genotype imputation.

Total 
population Chip Number of 

animals
Density 
(SNPs)

Imputed 
density

Imputation 
accuracy 

(R2)

144

BovineLD 31 6820 (7K) 44224 0.730

BovineHD 48 40321 
(40K) 44224 0.970

SNP50K 65 44224 
(44K) 44224 0.998

Descriptive Analysis for Marker Effects. The effects 
of the SNPs were estimated for all the traits included 
in the analysis (e.g. MY, PP, PF, SCS, CI and OD) using 
low-density genotypes (6K) and imputed genotypes 
(44K_imputed). In addition, when comparing the effects 
of the SNPs obtained with the 6K database with those 
obtained with the 44K_imputed database, the researchers 
observed that the 6K database produced higher effects 
(Table 3).

Accuracy of the Direct Genomic Values. The values 
for genomic accuracy (rpDGV;EBV) ranged from 0.19 to 0.29 
when using the 6K genotype database. In contrast, when 
the 44K_imputed database was used, the values were 
higher and ranged from 0.24 to 0.33 for all the studied 

traits. While the correlations obtained were low—both 
using low- and high-density genotypes—, an increase 
in the values for accuracy can be observed when the 
SNPs used have a higher density. This becomes even 
more evident when the traits have a higher heritability 
(Table 4). 

Table 3.	 Descriptive statistical analysis of the effects of the SNPs 
for yield and reproduction traits in Holstein cattle from 
Antioquia, Colombia.

Trait Panel Density 
(SNP)

Mean
±SD Minimum Maximum

MY

6K 6716 

-6.2x10-2

±0.610 -3.75 3.57

PP 1.0x10-5

±0.0012 -0.009 0.008

PF 7.5x10-6

±0.0018 -0.016 0.013

SCS 4.0x10-5

±0.0009 -0.004 0.005

CI 3.0x10-4

±0.027 -0.115 0.105

OD -6.2x10-4

±0.056 -0.253 0.266

MY

44K_
imputed 44224 

1.4x10-3

±0.507 -1.95 2.54

PP 8.5x10-7

±0.0003 -0.002 0.002

PF -3.8x10-8

±0.0003 -0.002 0.002

SCS 2.8x10-7

±0.00018 -0.001 0.001

CI 2.2x10-5

±0.003 -0.017 0.019

OD 7.3x10-5

±0.016 -0.081 0.076

MY - milk yield (in Liters/lactation), PF - percentage of fat, PP - percentage 
of protein, SCS - somatic cell score, CI - calving interval, OD - open days, 
SD - standard deviation.

Likewise, the Spearman correlations (rsDGV;EBV) ranged 
from 0.16 to 0.33 when using the 6K database. When 
using imputed data (44_imputed), in turn, these 
correlations were higher, and their values ranged from 
0.30 to 0.35, except for CI, which had a value of 0.20 
(Table 4).

Table 4.	 Genomic accuracy of the direct genomic values and 
Spearman Correlation between DGV and EBV. 

Trait
6K 44K_imputed 6K 44K_imputed

rp DGV;EBV±SE rp DGV;EBV±SE rs DGV;EBV±SE rs DGV;EBV±SE

MY 0.24±0.081 0.32±0.080 0.27±0.081 0.30±0.080

PP 0.24±0.081 0.33±0.079 0.16±0.083 0.35±0.079

PF 0.29±0.080 0.33±0.079 0.33±0.079 0.38±0.078

SCS 0.22±0.082 0.30±0.080 0.22±0.082 0.32±0.080

CI 0.19±0.082 0.24±0.081 0.28±0.081 0.20±0.082

OD 0.19±0.082 0.26±0.081 0.18±0.083 0.21±0.082

MY - milk yield, PF - percentage of fat, PP - percentage of protein, SCS - 
somatic cell score, CI - calving interval, OD - open days,rpDGV;EBV - Pearson 
correlation between DGV and EBV, SE - standard error, rsDGV;EBV - Spearman 
correlation between DGV and EBV
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The regression coefficients (bDGV;EBV) obtained for MY, PP, 
PF, SCS, CI and OD were low: 0.16, 0.03, 0.11 and 0.11 
respectively when using the 6K, database. In addition, 
the only coefficients that were higher when using the 
44K_imputed database were MY, PP, PF and SCS; their 
values were 0.26, 0.12, 0.20 and 0.16 respectively. For 
CI and OD, no significant changes were observed, the 
values being 0.03 and 0.04 respectively (Table 5). 

Table 5. Prediction bias of the conventional EBVs for yield- and 
reproduction-related traits of Holstein cattle from 
Antioquia, Colombia.

Trait
6K 44K_imputed

b DGV;EBV±SE b DGV;EBV±SE

MY 0.16±0.054 0.26±0.064

PP 0.03±0.011 0.12±0.030

PF 0.11±0.030 0.20±0.048

SCS 0.11±0.042 0.16±0.044

CI 0.03±0.013 0.03±0.010

OD 0.03±0.015 0.04±0.013

MY - milk yield, PF - percentage of fat, PP - percentage of protein, SCS - 
somatic cell score, CI - calving interval, OD - open days, bDGV;EBV - regression 
coefficient for the conventional EBV over the DGV (prediction bias).

DISCUSSION

In this study, genotype imputation accuracy was 
determined using the findhap.f90 program. The values 
obtained were 0.97 when imputing from 40K to 44K, and 
0.73 when imputing genotypes of 6K to 44K. Khatkar et al 
(6), determined imputation accuracy using the IMPUTE2, 
Beagle and fastphase programs with values of 0.8983, 
0.8595, and 0.7630 when imputing genotypes from 3K 
to 50K. Additionally, they obtained values of 0.9731, 
0.9597 and 0.9626 when imputing genotypes from 35K 
to 50K respectively for each program. Their reference 
population was composed of 136 animals. Moreover, when 
the reference population was of 27 animals, the values for 
imputation accuracy were lower, namely: 0.8160, 0.6598 
and 0.7409 when imputing from 3K to 50K, and 0.9229, 
0.8543 and 0.9351 when imputing from 35K to 50K. In 
another study, Chen et al (26), determined the imputation 
accuracy values for the densities of SNPs, namely: 6K, 
3K, 1536SNP, 768SNP and 384SNP, when imputed to 
50K, using the FImpute2 program. The accuracy values 
were: 0.9723, 0.9367, 0.9120, 0.8285 and 0.7210 
respectively for each density. In that study, the authors 
included 2046 animals in the reference population (50K 
genotypes). These results are consistent with ours and 
suggest that, in all cases, the number of animals in the 
reference population and the density of the markers are 
factors that significantly affect imputation accuracy. 

Furthermore, using panels with high SNP density may 
increase the accuracy of the genomic selection to a much 
greater extent than using low density panels (6,27). 
However, genotyping animals with high density chips is 

a much more expensive strategy, thus it is necessary 
to use imputed data in order to improve the prediction 
of genomic values. In our study, low density genotypes 
(6K) were used together with imputed genotypes (44K_
imputed), on which accuracy and (rpDGV;EBV) prediction 
bias (bDGV;EBV), were determined for six traits of economic 
relevance (MY, PP, PF, SCS, CI and OD). The average 
prediction accuracy value for DGV was 0.23 when using 
the 6K panel and 0.30 when using the 44K_imputed 
panel.

Khatkar et al (6), also determined DGV accuracy in a 
validation population of 452 bulls using the effects of 
the SNPs from a reference population of 1753 animals. 
Accuracy was calculated using the following genotypes: 
LD, 50K_imputed and 800K_imputed. The accuracy 
values for MY (h2 =0.25) were: 0.481, 0.546 and 0.558. 
For fertility (h2=0.04), they were lower: 0.232, 0.246 
and 0.256 respectively for each density. The results 
suggest that the accuracy values obtained using the 
800K_imputed density were higher than those obtained 
for the 50K_imputed and LD panels. On the other hand, 
Chen et al (26), determined better accuracy values 
when using panels with higher SNP densities for MY and 
PP. For MY, the accuracy values were: 0.64 (50K), 0.61 
(3K), 0.58 (L1536), 0.52 (L768) and 0.42 (L384). For PP, 
the accuracy values were: 0.76 (50K), 0.72 (3K), 0.59 
(L1536), 0.51 (L768) and 0.34 (L384). 

In our study, the accuracy values obtained were 0.24 
and 0.32 for MY, 0.34 and 0.33 for PP, 0.19 and 0.24 
for CI and 0.19 and 0.26 for OD when using the 6K 
and 44K panels respectively. In the study conducted 
by Chen et al (26), an average accuracy increases of 
7 points when they moved from 1536 to 6177 SNPs. 
Likewise, the increase reached 7.8 points when going 
from 1536 to 35790 SNPs for four traits evaluated (MY, 
PP, PF and SCS). In our study, an average accuracy 
of 6.8 points was determined for the same traits (MY, 
PP, PF and SCS), when going from the 6K panel to the 
44K_imputed panel, this indicates that marker density 
plays a key role in the accuracy of genomic prediction 
for traits with high and low heritability. This also shows 
the importance of using a moderate or high-density chip 
and/or performing genotype imputation. The explanation 
for this increase in the accuracy of DGV prediction lies in 
the fact that a panel with more SNPs makes it possible to 
cover a broader region of the genome and thus capture 
a higher number of QTLs involved in the expression of 
the quantitative traits.

In our research, the DGV prediction accuracy values for 
PP and PF were equal, and had a value of 0.33 for the 
two traits when using the 44K panel. Similarly, Chen et 
al (26), determined the DGV prediction accuracy using 
a 50K panel for PP and PF and obtained values of 0.75 
and 0.76 respectively. In both studies PP and PF have a 
similar genetic architecture, that is, there are few QTLs 
with a great effect. This contrasts with SCS, where there 
are many QTLs with a small effect. Now, the difference 
between the accuracy values reported by the two studies 
is associated with the size of the reference population. A 
total of 132 animals were used in our study, whereas Chen 
et al (26) used 10309. Furthermore, the methodologies 
used were different: their study used Bayes B and ours 



7253

Rev MVZ Córdoba. 2019 May/August; 24(2):7248-7255

Zambrano et al -  Genomic Evaluation of Colombian Holstein

used Bayes C. In the case of Bayes B, each SNP has a 
specific locus variance. In Bayes C, on the other hand, 
variance is common to all SNPs (23). 

Habier et al (28), determined the GEBV prediction 
accuracy in 113 young Holstein bulls using the effects of 
40764 SNPs estimated in a reference population of 4000 
animals. The accuracy values obtained (rpGEBV;DEBV) for MY 
and SCS were 0.46 and 0.18 when using the Bayes A 
method, 0.41 and 0.12 when using the Bayes B method, 
and 0.43 and 0.15 with the Bayes Cpi. For traits with low 
heritability such as SCS, many QTL with small effects 
cannot be detected, since the linkage disequilibrium 
between the markers and the QTLs might be too low. 
For this reason, higher marker density is required. 
Additionally, it has not yet been possible to use a 50K 
panel to capture 100% of the genetic variance in all the 
traits evaluated for dairy cattle. The maximum value that 
has been captured ranges from 90% for MY, to 32% for 
fertility-related traits (28). 

In another study, Hayes et al (29), determined the 
reliability (defined through the rGEBV;EBV/rEBV;TEBV ratio) 
of genomic values in young animals using the Bayes A 
method for PP and fertility with a reference population 
of 332 bulls, based on which the effects of 38259 SNPs 
were estimated. The reliability value was 0.36 for PP 
and 0.14 for fertility. On the other hand, Nicolazzi et 
al (30) determined the prediction accuracy of genomic 
values (rABV,DGV), using Bayes A and Bayes LASSO-gamma 
methods for protein yield (PY) and PF with a validation 
population of 386 bulls, using the effects of 39048 SNPs 
estimated in a reference population of 763 Holstein-
Friesian bulls. The prediction accuracies obtained for PY 
were 0.52 and 0.48 respectively for each method, while 
for PF the values were 0.75 and 0.71 respectively. The 
authors suggest that la prediction accuracy is better for 
PF, since this trait is explained in more than 30% by 
mutations in the DGAT1 and GHR genes, indicating that PF 
is a trait more inheritable than PY. Colombani et al (31), 
also determined the accuracy and bias of genomic values 
in the Holstein (2976 bulls in the reference population) 
and Montbéliarde (950 bulls in the reference population) 
breeds using the Bayes Cpi. method The SNPs assessed 
were 38462 for Montbéliarde and 39738 for Holstein. The 
accuracy values for MY, PF and conception rate (CR) were: 
0.57, 0.80 and 0.34 for the Holstein breed and 0.44, 
0.62 and 0.43 respectively for the Montbéliarde breed. 
The regression coefficients (prediction bias) were: 0.73, 
0.90 and 0.72 for Holstein and 0.74, 0.85 and 1.35 for 
the Montbéliarde breed. 

In our study, the accuracy values obtained for PP and 
PF were higher (0.33 in both cases) when compared 
with those obtained for OD and CI, which were 0.24 and 
0.26 respectively. Likewise, the regression coefficient 
was higher for PP and PF (0.12 and 0.20) when 
compared with CI and OD, which had values of 0.03 and 
0.04 respectively. These coefficients were less than 1 
(b<1) in all cases, which indicates that the DGVs were 
overestimated with respect to the conventional EBVs; 
this in turn suggests inflation of the genetic variance 
in all the studied traits. Hayes et al (29), state that the 
reliability of the GEBVs for fertility was low in comparison 
to the value for PP, considering the strong difference in 
heritability among the studied traits. They then suggest 
that a higher amount of records for reproduction-related 
traits is required in the initial experiments in order to 
obtain more reliable GEBVs and thus achieve a more 
efficient genomic selection. 

Finally, it must be considered than in this study, we 
estimated the effects of the markers on a small reference 
population, therefore the accuracy values and the 
regression coefficients were low when compared with 
the results of the research conducted by the previously 
mentioned authors. Therefore, it is important to clarify 
that this study shows the initial results of genomic 
evaluations for economically relevant traits with high 
and low heritability in the Colombian high tropic. 
Nevertheless, it is necessary to increase the number of 
genotyped animals and SNPs to consolidate a reference 
population from which genomic evaluations can be made 
more accurately.

Ethics Committee 

The experimental protocol of this study was approved by 
the Research Ethics Committee of the National University 
of Colombia at Medellin (number approvable letter: 
CEMED-015 May, 2012).

Conflicts of interest

None of the authors have any conflict of interest in regard 
to this article.

Acknowledgements

Sincere thanks to the National University from Colombia 
- Host Medellin, COLANTA LTDA Cooperative and the 
Ministry of Agriculture and Rural Development of the 
government of Colombia for financing of this research.

REFERENCES

1.	 Goddard ME, Hayes BJ. Genomic Selection. J Anim 
Breed Genet. 2007; 124(6):323-330. https://doi.
org/10.1111/j.1439-0388.2007.00702.x 

2.	 Wang L, Zhu G, Johnson W, Kher M. Three new 
approaches to genomic selection. Plant Breeding. 
2018;137(5):673–681. https://doi.org/10.1111/
pbr.12640

https://doi.org/10.1111/j.1439-0388.2007.00702.x
https://doi.org/10.1111/j.1439-0388.2007.00702.x
https://doi.org/10.1111/pbr.12640
https://doi.org/10.1111/pbr.12640


7254 Journal MVZ Crdoba  •  Volumen 24(2) May - August   2019

3.	 Meuwissen TH, Hayes BJ, Goddard ME: Prediction 
of total genetic value using genome-wide dense 
marker maps. Genetics. 2001; 157(4):1819–1829. 
https://www.ncbi.nlm.nih.gov/pubmed/11290733 

4.	 Boichard D, Chung H, Dassonneville R, David X, 
Eggen A, Fritz S. et al. Design of a bovine low-
density SNP array optimized for imputation. PLoS 
ONE. 2012; 7(3):e34130. https://doi.org/10.1371/
journal.pone.0034130 

5.	 Weng Z, Zhang Z, Ding X, Fu W, Ma P, Wang C, 
Zhang Q. Application of imputation methods to 
genomic selection in Chinese Holstein cattle. J 
Anim Sci Biotechnol. 2012, 3(1):6. https://doi.
org/10.1186/2049-1891-3-6 

6.	 Khatkar MS, Moser G, Hayes BJ, Raadsma HW. 
Strategies and utility of imputed SNP genotypes for 
genomic analysis in dairy cattle. BMC Genomics. 
2012; 13(1):538. https://doi.org/10.1186/1471-
2164-13-538 

7.	 Schefers J, Weigel KA. Genomic selection in dairy 
cattle: Integration of DNA testing into breeding 
programs. Anim Front. 2012; 12(1):4-9. https://
doi.org/10.2527/af.2011-0032 

8.	 Huang YJ, Hickey JM, Cleveland MA, Maltecca C. 
Assessment of alternative genotyping strategies 
to maximize imputation accuracy at minimal cost. 
Genet Sel Evol. 2012; 44(1):25. https://doi.
org/10.1186/1297-9686-44-25 

9.	 Scheet P, Stephens M. A fast and flexible statistical 
model for large-scale population genotype data: 
Applications to inferring missing genotypes 
and haplotypic phase. Am J Hum Genet. 2006; 
78(4):629-644. https://doi.org/10.1086/502802 

10.	 Browning BL, Browning SR. A unified approach to 
genotype imputation and haplotype phase inference 
for large data sets of trios and unrelated individuals. 
Am J Hum Genet. 2009; 84(2):210-223. https://
doi.org/10.1016/j.ajhg.2009.01.005 

11.	 Howie BN, Donnelly P, Marchini J. A flexible and 
accurate genotype imputation method for the next 
generation of genome-wide association studies. 
PLoS Genet. 2009; 5(6):e1000529. https://doi.
org/10.1371/journal.pgen.1000529 

12.	 VanRaden PM, Null DJ, Sargolzaei M, Wiggans GR, 
Tooker ME, Cole JB, et al. Genomic imputation and 
evaluation using high-density Holstein genotypes. 
J Dairy Sci. 2013; 96(1):668–678. https://doi.
org/10.3168/jds.2012-5702 

13.	 Sargolzaei M, Chesnais JP, Schenkel FS. A new 
approach for efficient genotype imputation using 
information from relatives. BMC Genomics. 2014; 
15: 478. https://doi.org/10.1186/1471-2164-15-
478

14.	 Weigel KA, Van Tassell CP, O’Connell JR, VanRaden 
PM, Wiggans GR. Prediction of unobserved single 
nucleotide polymorphism genotypes of Jersey 
cattle using reference panels and population-
based imputation algorithms. J Dairy Sci. 2010; 
93(5):2229-2238. https://doi.org/10.3168/
jds.2009-2849 

15.	 Zhang Z, Druet T. Marker imputation with low-
density marker panels in Dutch Holstein cattle. J 
Dairy Sci. 2010; 93(11):5487-5494. https://doi.
org/10.3168/jds.2010-3501 

16.	 Wiggans GR, Cole JB, Hubbard SM, Sonstegard 
TS. Genomic Selection in Dairy Cattle: The 
USDA Experience. Ann Rev Anim Biosci.  2017; 
5(1):309–327. https://doi.org/10.1146/annurev-
animal-021815-111422 

17.	 Rincón JC, Zambrano JC, Echeverri JJ. Estimation of 
genetic and phenotypic parameters for production 
traits in Holstein and Jersey from Colombia. Rev 
MVZ Córdoba. 2015; 20(Supl):4962-4973. https://
doi.org/10.21897/rmvz.11 

18.	 Echeverri J, Zambrano JC, López-Herrera A. 
Genomic evaluation of Holstein Cattle in Antioquia 
(Colombia): a case study. Rev Colomb Cienc 
Pecu. 2014; 27(4):306-314. http://www.
scielo.org.co/scielo.php?script=sci_arttext&pid
=S0120-06902014000400009 

19.	 Zambrano JC, Rincón JC, López A, Echeverri JJ. 
Estimation and comparison of conventional and 
genomic breeding values in Holstein cattle of 
Antioquia, Colombia. Rev MVZ Córdoba. 2015; 
20(3):4739-4753. https://doi.org/10.21897/
rmvz.44 

20.	 Martínez R, Gómez Y, Rocha JFM. Genome-wide 
association study on growth traits in Colombian 
creole breeds and crossbreeds with Zebu cattle. 
Genet Mol Res. 2014; 13(3):6420-6432. https://
doi.org/10.4238/2014.august.25.5 

21.	 Martínez R, Mar JF, Bejarano D, Burgos W. Genomic 
predictions and accuracy of weight traits in a 
breeding program for Colombian Zebu Brahman [On 
line]. Proceedings of the World Congress on Genetics 
Applied to Livestock Production. 2018. http://
www.wcgalp.org/system/files/proceedings/2018/
genomic-predictions-and-accuracy-weight-traits-
breeding-program-colombian-zebu-brahman.pdf  

22.	 Ali AK, Shook GE. An Optimun transformation for 
somatic cell concentration in milk. J Dairy Sci. 
1980; 63(3):487-490. https://doi.org/10.3168/
jds.s0022-0302(80)82959-6 

23.	 Kizilkaya k, Fernando RL, Garrick DJ. Genomic 
Prediction of simulated multibreed and purebred 
performance using observed fifty thousand single 
nucleotide polymorphism genotypes. J Anim Sci. 
2010; 88(2):544-551. https://doi.org/10.2527/
jas.2009-2064 

https://www.ncbi.nlm.nih.gov/pubmed/11290733
https://doi.org/10.1371/journal.pone.0034130
https://doi.org/10.1371/journal.pone.0034130
https://doi.org/10.1186/2049-1891-3-6
https://doi.org/10.1186/2049-1891-3-6
https://doi.org/10.1186/1471-2164-13-538
https://doi.org/10.1186/1471-2164-13-538
https://doi.org/10.2527/af.2011-0032
https://doi.org/10.2527/af.2011-0032
https://doi.org/10.1186/1297-9686-44-25
https://doi.org/10.1186/1297-9686-44-25
https://doi.org/10.1086/502802
https://doi.org/10.1016/j.ajhg.2009.01.005
https://doi.org/10.1016/j.ajhg.2009.01.005
https://doi.org/10.1371/journal.pgen.1000529
https://doi.org/10.1371/journal.pgen.1000529
https://doi.org/10.3168/jds.2012-5702
https://doi.org/10.3168/jds.2012-5702
https://doi.org/10.1186/1471-2164-15-478
https://doi.org/10.1186/1471-2164-15-478
https://doi.org/10.3168/jds.2009-2849
https://doi.org/10.3168/jds.2009-2849
https://doi.org/10.3168/jds.2010-3501
https://doi.org/10.3168/jds.2010-3501
https://doi.org/10.1146/annurev-animal-021815-111422
https://doi.org/10.1146/annurev-animal-021815-111422
https://doi.org/10.21897/rmvz.11
https://doi.org/10.21897/rmvz.11
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-06902014000400009
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-06902014000400009
http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120-06902014000400009
https://doi.org/10.21897/rmvz.44
https://doi.org/10.21897/rmvz.44
https://doi.org/10.4238/2014.august.25.5
https://doi.org/10.4238/2014.august.25.5
http://www.wcgalp.org/system/files/proceedings/2018/genomic-predictions-and-accuracy-weight-traits-breeding-program-colombian-zebu-brahman.pdf
http://www.wcgalp.org/system/files/proceedings/2018/genomic-predictions-and-accuracy-weight-traits-breeding-program-colombian-zebu-brahman.pdf
http://www.wcgalp.org/system/files/proceedings/2018/genomic-predictions-and-accuracy-weight-traits-breeding-program-colombian-zebu-brahman.pdf
http://www.wcgalp.org/system/files/proceedings/2018/genomic-predictions-and-accuracy-weight-traits-breeding-program-colombian-zebu-brahman.pdf
https://doi.org/10.3168/jds.s0022-0302(80)82959-6
https://doi.org/10.3168/jds.s0022-0302(80)82959-6
https://doi.org/10.2527/jas.2009-2064
https://doi.org/10.2527/jas.2009-2064


7255

Rev MVZ Córdoba. 2019 May/August; 24(2):7248-7255

Zambrano et al -  Genomic Evaluation of Colombian Holstein

24.	 Verbyla KL, Bowman PJ, Hayes BJ, Raadsma H, 
Goddard ME. Sensitivity of genomic selection to 
using different prior distributions. BMC Proc 2010; 
4(1):S5. https://doi.org/10.1186/1753-6561-4-
s1-s5 

25.	 Meuwissen T, Hayes B, Goddard M. Accelerating 
Improvement of livestock with Genomic Selection. 
Annu Rev Anim Biosci. 2013; 1(1):221-237. https://
doi.org/10.1146/annurev-animal-031412-103705 

26.	 Chen L, Li C, Zargolzaei M, Schenkel F. Impact of 
genotypes imputation on the performance of GBLUP 
and bayesian methods for genomic prediction. 
PLoS ONE. 2014; 9(7):e101544. https://doi.
org/10.1371/journal.pone.0101544 

27.	 Vázquez AI, Rosa GJ, Weigel KA, de los Campos G, 
Gianola D, Allison DB. Predictive ability of subsets of 
single nucleotide polymorphisms with and without 
parent average in US Holsteins. J Dairy Sci. 2010; 
93(12):5942–5949. https://doi.org/10.3168/
jds.2010-3335 

28.	 Habier D, Rohan LF, Kizilkaya K, Garrick DJ. 
Extension of the bayesian alphabet for genomic 
Selection. BMC Bioinformatics. 2011; 12(1):186. 
https://doi.org/10.1186/1471-2105-12-186 

29.	 Hayes BJ, Bowman PJ, Chamberlain AJ, Goddard 
ME. Invited review: Genomic selection in dairy 
cattle: Progress and challenges. J Dairy Sci 2009; 
92(2):433–443. https://doi.org/10.3168/jds.2008-
1646  https://doi.org/pdf/10.4081/ijas.2013.e91

30.	 Nicolazzi EL, Negrini R, Chamberlain AJ, Goddard 
ME, Marsan PA, Hayes BJ. Effect of Prior Distributions 
on Accuracy of Genomic Breeding Values for Two 
Dairy Traits. Ital J Anim Sci 2013; 12(e91):555-561. 
https://www.tandfonline.com/doi/pdf/10.4081/
ijas.2013.e91

	
31.	 Colombani C, Legarra A, Fritz S, Guillaume F, 

Croiseau P, Ducrocq V, et al. Application of Bayesian 
least absolute shrinkage and selection operator 
(LASSO) and BayesCπ methods for genomic 
selection in French Holstein and Montbéliarde 
breeds. J Dairy Sci. 2013; 96(1):575–591. https://
doi.org/10.3168/jds.2011-5225 

https://doi.org/10.1186/1753-6561-4-s1-s5
https://doi.org/10.1186/1753-6561-4-s1-s5
https://doi.org/10.1146/annurev-animal-031412-103705
https://doi.org/10.1146/annurev-animal-031412-103705
https://doi.org/10.1371/journal.pone.0101544
https://doi.org/10.1371/journal.pone.0101544
https://doi.org/10.3168/jds.2010-3335
https://doi.org/10.3168/jds.2010-3335
https://doi.org/10.1186/1471-2105-12-186
https://doi.org/10.3168/jds.2008-1646
https://doi.org/10.3168/jds.2008-1646
https://www.tandfonline.com/doi/pdf/10.4081/ijas.2013.e91
https://www.tandfonline.com/doi/pdf/10.4081/ijas.2013.e91
https://doi.org/10.3168/jds.2011-5225
https://doi.org/10.3168/jds.2011-5225

