Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Tratamiento para el control de Argulus sp. (Crustacea) en puyeque Dormitator latifrons (Eleotridae) en México

Control treatment for Argulus sp. (Crustacea) in the fat sleeper Dormitaror latifrons (Eleotridae) in Mexico



Cómo citar
López-Ceseña, J. Ángel G. ., Rodríguez-Montes de Oca, G. ., Benitez-Hernández, A. ., Nieves-Soto, M. ., & Grano-Maldonado, M. I. (2025). Tratamiento para el control de Argulus sp. (Crustacea) en puyeque Dormitator latifrons (Eleotridae) en México. Revista MVZ Córdoba, 30(1), e3489. https://doi.org/10.21897/rmvz.3489

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.


J. Ángel Gibrian López-Ceseña,

Autonomous University of Sinaloa, Faculty of Marine Sciences, Mazatlán, Sinaloa, Mexico. 


Gustavo Rodríguez-Montes de Oca,

Autonomous University of Sinaloa, Faculty of Marine Sciences, Mazatlán, Sinaloa, Mexico. 


Asahel Benitez-Hernández,

Autonomous University of Sinaloa, Faculty of Marine Sciences, Mazatlán, Sinaloa, Mexico. 


Mario Nieves-Soto,

Autonomous University of Sinaloa, Faculty of Marine Sciences, Mazatlán, Sinaloa, Mexico. 


Objetivo. Determinar el tiempo efectivo de tratamiento con el protector cutáneo Dermogard® Aqua, y su correlación con el tiempo de exposición con parásitos desprendidos; e identificar los posibles parásitos causantes de infección en el pez puyeque (Dormitator latifrons). Materiales y métodos. En un sistema de cultivo en Sinaloa (México) se observó que individuos del puyeque presentaban falta de apetito, y nado errático. Se realizaron muestras de frotis de piel en los peces para identificar la causa de mortalidad. Se establecieron cinco tratamientos experimentales por triplicado, con baños de inmersión con Dermogard® Aqua a una concentración de 0.2 g/L para determinar el efecto del tiempo de exposición; TH1(1 h), TH2 (3 h), TH3 (6 h), TH4 (12 h) y TH5 (24 h) y un Control negativo (CTS) el cual no recibió tratamiento. Al finalizar se realizaron frotis de piel y branquias para su observación en el laboratorio y establecer la efectividad del tratamiento. Además, se realizó una búsqueda bibliográfica sistematizada global de diez años sobre métodos de control de este ectoparásito. Resultados. Se identificó al ectoparásito crustáceo Argulus sp. como agente de infección en D. latifrons. Se muestra una correlación entre el tiempo de exposición y cantidad de parásitos desprendidos (p<0.05). Conclusiones. El tratamiento más efectivo procurando el bienestar de los peces para el control de los ectoparásitos con el protector cutáneo Dermogard® Aqua fue TH3 (6 h) (p<0.05). Los países con más estudios mundiales en tratamientos para el control de Argulus sp. son Indonesia e India. 


Visitas del artículo 80 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. FAO. The state of world fisheries and aquaculture 2022. Towards the blue transformation. Rome, FAO. 2022. https://doi.org/10.4060/cc0461es
  2. García-Medel DI. Food security: challenges of aquaculture in Mexico. J. Behav . Feed , 2022; 2(2):10-19. https://doi.org/10.32870/jbf.v2i2.31
  3. CONAPESCA. Statistical yearbook of aquaculture and fishing 2021. National Aquaculture and Fisheries Commission. 2021. Sheet mojarra statistics , 2012-2021. https://nube.conapesca.gob.mx/sites/cona/dgppe/2021/ANUARIO_ESTADISTICO_DE_ACUACULTURA_Y_PESCA_2021.pdf
  4. Salas‐Singh C, Morales‐Bohorquez E, Aguirre‐Villaseñor H. Reproductive biology of the bullseye puffer Sphoeroides annulatus : Gonadosomatic index and its suitability for estimating length at maturity. J Fish Biol. 2022; 101(5):1119-1133. https://doi.org/10.1111/jfb.15174
  5. Duncan NJ, Rodriguez-Montes de Oca GA, Alok D, Zohar Y. Effects of controlled delivery and acute injections of LHRHa on bullseye puffer fish ( Sphoeroides annulatus ) spawning. Aquac. 2003; 218:625-635. https://doi.org/10.1016/S0044-8486(02)00299-5
  6. Álvarez- Lajonchère L, Reina MA, Camacho-Hernández MA, Kraul S. Design of a pilot-scale tropical marine finfish hatchery for a research center at Mazatlán, México. Aquac Eng. 2007; 36:81-96. https://doi.org/10.1016/j.aquaeng.2006.07.003
  7. Abdo-de la Parra MI, García-Ortega A, Martínez-Rodríguez, González-Rodríguez B, Velasco-Blanco G, Hernández C, Duncan N. An intensive rearing protocol for larvae of the bullseye puffer, Sphoeroides annulatus (Jenyns). Aquac Res. 2012; 41(10):554-560. https://doi.org/10.1111/j.1365-2109.2010.02536.x
  8. Valdez-Pineda MC, Morán-Angulo RE, Voltolina D, Castillo- Vargasmachuca S. Population structure and reproductive aspects of puffer fish Sphoeroides annulatus ( Jenyns , 1842) (Osteichthyes: Tetraodontidae), landed in Teacapán, Sinaloa, Mexico. Lat Am J Aquac Ans. 2014; 42(1):121-126. https://doi.org/10.3856/vol42-issue1-fulltext-9
  9. Badillo-Zapata D, Tafoya-Sánchez DJ, Vargas-Ceballos MA, Ruiz-González LE, Rodríguez-Montes de Oca GA, Palma- Cancino D, Vega-Villasante F. Effect of sowing density on growth and parameters Dormitator’s bloodlines latifrons (Richardson, 1844). Ecosystems and agricultural resources . 2022; 9(3). https://doi.org/10.19136/era.a9n3.3310
  10. Abdo-De la Parra MI, Rodríguez-Montes de Oca GA, Rodríguez-Ibarra LE, Dominguez-Jimenez P, Román-Reyes J, Velasco-Blanco G, Ibarra-Castro L. Proximal composition and amino acid profile of early stages of the flamingo snapper Lutjanus guttatus . Rev. Biol. Mar. 2017; 52(2):325-332. https://dx.doi.org/10.4067/S071819572017000200011
  11. Mehrim AI, Khalil, FF, Hassan, ME. Hydroyeast Aquaculture® as a reproductive enhancer agent for the adult Nile tilapia (Oreochromis niloticus Linnaeus, 1758). Fish Physiol. Biochem . 2015; 41:371–381. https://doi.org/10.1007/s10695-014-9989-5
  12. Rodríguez-Montes de Oca GA, Dabrowski K. Growth and body composition of Midas ( Amphilophus citrinellus ) and Nile tilapia ( Oreochromis niloticus ) reared in duoculture. Rev Colomb Cienc Pecu . 2015; 28(3):255-264. https://doi.org/10.17533/udea.rccp.v28n3a6
  13. Abaho I, Masembe C, Akoll P, Jones CL. The use of plant extracts to control tilapia reproduction: Current status and future perspectives. J World Aquac Soc. 2022; 53(3):593-619. https://doi.org/10.1111/jwas.12863
  14. Rodríguez-Montes de Oca GA, Medina-Hernández EA, Velazquez-Sandoval J, López V, Roman R, Dabrowski K, Haws MC. Use of gonadotropin releasing hormone analogs on the induced reproduction of chame Dormitator latifrons. AQUAFISH Collaborative Research Support Program. 2011; 187-191.
  15. Rodríguez-Montes de Oca GA, Medina-Hernández EA, Velázquez-Sandoval J, López-López VV, Román-Reyes JC, Dabrowski K, Haws MC. Production of Chame (Dormitator latifrons, Pisces: Eleotridae) larvae using GnRHa and LHRHa. Rev Colomb Cienc Pecu. 2012; 25(3):422-429. https://doi.org/10.17533/udea.rccp.324786
  16. López-López VV, Rodríguez-Montes de Oca GA, Galavíz MA, Román-Reyes C, Medina-Hernández EA, Dabrowski K, Haws MC. Comparative histological description of the development of the digestive and visual system of chame Dormitator larvae latifrons (Pisces: Eleotridae). Lat Am J Aquac. Ans. 2015; 43(3):484-494. http://dx.doi.org/10.3856/vol43-issue3-fulltext-10
  17. Basto-Rosales M, Rodríguez-Montes de Oca G, Carrillo- Farnés O, Álvarez-González C, Badillo-Zapata D, Vega-Villasante F. Growth of Dormitator latifrons under different densities in concrete tanks. Trop Subtrop Agroecosyt. 2019; 22(2):499-503 http://dx.doi.org/10.56369/tsaes.2657
  18. Grano-Maldonado M, Roque A, Fajer-Avila EJ. Development of Heterobothrium Ecuador (Monogenea : Diclidophoridae) in bullseye puffer fish Sphoeroides annulatus under experimental conditions. Fish Pathol. 2010; 45:175–178. https://doi.org/10.3147/jsfp.45.175
  19. Grano-Maldonado M., Rodríguez-Santiago MA, García-Vargas F, Nieves-Soto M, Soares F. An emerging infection caused by Gyrodactylus cichlidarum Paperna, 1968 ( Monogenea: Gyrodactylidae ) associated with massive mortality on farmed tilapia Oreochromis niloticus (L.) on the Mexican Pacific coast. Lat Am J Aquac Ans. 2018; 46(5):961-968. http://dx.doi.org/10.3856/vol46-issue5-fulltext-9
  20. Grano-Maldonado MI, Aguirre-Villaseñor H, Betancourt-Lozano M, Fajer -Ávila EJ. In vitro effect of low salinity on egg hatching and larval survival of Heterobothrium ecuadori ( Monogenea ) infecting bullseye puffer fish Sphoeroides annulatus . Aquac Res. 2015; 46:152-163. https://doi.org/10.1111/are.12300
  21. García-Magaña L, Rodríguez-Santiago M, Grano-Maldonado M , Jiménez-Vasconcelos L, Guerra-Santos R. The effectiveness of sodium chloride and formalin in trichodiniasis of farmed freshwater tilapia Oreochromis niloticus (Linnaeus, 1758) in southeastern Mexico. Lat Am J Aquac Ans. 2019; 47(1):164-174. https://doi.org/10.3856/vol47-issue1-fulltext-18
  22. Bader C, Starling DE, Jones DE, Brewer MT. Use of praziquantel to control platyhelminth parasites of fish. J Vet Pharmacol Therapy. 2019; 42(2):139-153. https://doi.org/10.1111/jvp.12735
  23. Garrido-Olvera LL, García-Prieto, Mendoza-Garfias B. Helminth parasites of the fat sleeper, Dormitator latifrons (Richardson, 1844) from Tres Palos Lagon, Guerrero, Mexico. American Midland Naturalist. 2004; 151:163-169. https://doi.org/ 10.1674/0003-0031(2004)151[0165:HPOTPF]2.0.CO;2
  24. Mera-Loor GB, AM Santana-Piñeros AM, Reyes-Mero BM, Cruz- Quintana Y. Parvitaenia cochlearii (Cestoda: Gryporhynchidae) in chame cultivation Dormitator latifrons in Ecuador. Rev MVZ Córdoba. 2023; 28(1):954. https://doi.org/10.21897/rmvz.2954
  25. Pérez-Álvarez Y, García-Prieto L, Osorio-Sarabia L, Lamothe- Aergumedo R, León- Regagnon V. Present distribution of the genus Gnathostoma (Nematoda: Gnathostomatidae ) in Mexico. Zootaxa. 2008; 1930(1):39-55. https://doi.org/10.11646/zootaxa.1930.1.3
  26. Grano-Maldonado MI, Pérez-Ponce de León G. Parasitic worms in vertebrates from Sinaloa. How much do we know about them? SIBIUAS Magazine. 2023; 1(1):1-10. https://revistas.uas.edu.mx/index.php/SIBIUAS/article/view/351
  27. Vega-Villasante F, Cueto-Cortes L, Basto-Rosales MER, Badillo-Zapata D, Chong-Carrillo O, Ruiz-González LE, Ríos-González KG, Vargas-Ceballos MA, Galavíz -Parada JD, Montoya-Martínez EC. Argulus Presence sp . in a Dormitator crop latifrons : prevalence, mortality and treatment. 2017. Rev BioSciences . 2017; 4(6):1-14. https://dx.doi.org/10.15741/revbio.04.06.05
  28. Hakalahti-Sirén T, Mikheev VN, Valtonen ET. Control of freshwater fish louse Argulus coregoni : a step towards an integrated management strategy. Dis Aquat. Organ. 2008; 82(1):67-77. https://doi.org/10.1111/raq.12742
  29. Liang Y, Chang Y, Xie Y, Hou Q, Zhao H, Liu G, Jia G. Dietary ethylenediamine dihydroiodide mitigated Escherichia coli O78-induced immune and intestinal damage of ducks via suppression of NF- κ B signal. Poul Sci. 2024; 103(5):103610. https://doi.org/10.1016/j.psj.2024.103610
  30. Van VK, Kim MA, Vu DM, Truong DH. Effects of Dermo-Gard Product on Treatment of Parasites Infected in Common Carp ( Cyprinus Carpio ). Con Dai Vet Sci. 2021; 4 (4):454-458. https://doi.org/ 10.32474/CDVS.2021.04.000195
  31. López -Ceseña JAG, Rodríguez-Montes de Oca GA, Benítez-Hernández A, Soto-Nieves M, Grano-Maldonado MI. Treatment to control Gyrodactylus sp . and Cichlidogyrus sp. associated with mortality in tilapia (Oreochromis niloticus). UAS Marine Science Magazine , 2024; 1(2):30-58. https://revistas.uas.edu.mx/index.php/CIMAR/article/view/432/423
  32. Moller OS, Olesen J, Avenant-Oldewage A, Thomsen PF, Glenner H. First maxillae suction discs in Branchiura (Crustacea): development and evolution in light of the first molecular phylogeny of Branchiura, Pentastomida, and other Maxillopoda. Arthropod Struct Dev. 2008; 37(4):333-346. https://doi.org/ 10.1016/j.asd.2007.12.002
  33. Alas A, Oktener A, Solak K. A study on the morphology of Argulus foliaceus Lin., 1758 (Crustacea; Branchiura) procured from Çavuşcu Lake (Central Anatolia-Turkey) with scanning electron microscopy. Turkish J Biol. 2010; 34(2). https://doi.org/10.3906/biy-0811-27
  34. Banerjee A, Saha SK. Biphasic control of Argulus bengalensis Ramakrishna (1951) (Crustacea: Branchiura) with plant derivatives. Aquac. 2013; 414(3):202-209. https://doi.org/10.1016/j.aquaculture.2013.07.044
  35. Kumar S, Raman RP, Kumar K, Pandey PK, Kumar N, Mallesh B, Kumar A. Effect of azadirachtin on hematological and biochemical parameters of Argulus-infested goldfish Carassius auratus (Linn. 1758). Fish Physiol. Biochem . 2013; 39:733-747. https://doi.org/10.1007/s10695-012-9736-8
  36. Mayer J, Hensel P, Mejia-Fava J, Brandão J, Divers S. The use of Lufenuron to treat fish lice ( Argulus sp.) in Koi (Cyprinus carpio). J Exot Pet Med . 2013; 22(1):65-69. https://doi.org/10.1053/j.jepm.2012.12.010
  37. Wijayanto DSM, Solichin A, Widyorini N. Pengaruh ekstrak bawang putih (Allium sativum) dengan yang berbeda dose terhadap lepasnya suckers kutu ikan (Argulus sp.) pada ikan koi (Cyprinus carpio). J Manag Aquatic Res. 2013; 2(2):46-53. https://doi.org/10.14710/marj.v2i2.4103
  38. Farika EY, Suratma NA, Damriyasa IM. Ekstrak daun kelor (Moringa oleifera) sebagai pengendali infestation Argulus sp. pada ikan komet (Carassius auratus auratus). J Ilmu dan Keseh Hewan. 2014; 2(1):1-11. https://ojs.unud.ac.id/index.php/jikh/article/view/13531
  39. Ramudu KR, Devi BC, Kumar BP. Therapeutic management of Ar0gulosis in Carp ponds, Andhra Pradesh, India Int J Med. 2015; 3(2):66-68. https://doi.org/10.14419/ijm.v3i2.5006
  40. Häder DP, Schmidl J, Hilbig R, Oberle M, Wedekind H, Richter P. Fighting fish parasites with photodynamically active chlorophyllin. Parasitol Ans. 2016; 115:2277-2283. https://doi.org/10.1007/s00436-016-4972-y
  41. Kinang K, El-Rahimi S.A., Karina S. Pengaruh Ekstrak Biji Pinang (Areca catechu) Terhadap Mortalites Argulus sp. Pada Ikan Maskoki (Carassius auratus). JIM FKP Unsyiah. 2017; 2(1):200-205. https://jim.usk.ac.id/fkp/article/view/2775/1487
  42. Kumar A, Kumar S, Raman RP, Nadella RK, Ezhil S, Prasad MM. Effect of piperine on hematological and biochemical parameters of Argulus infested goldfish Carassius auratus (Linn. 1758). Indian Fisheries and Aquaculture Forum. 2017; 11:316-317. http://krishi.icar.gov.in/jspui/handle/123456789/25262
  43. Rayamajhi A, Kunwor P. First Record of Argulus japonicus (Crustacea: Branchiura) on Cyprinus carpio in Nepal, with Additional Notes on Morphology and Prevalence of A. japonicus and Its Treatment. Nepal Med J. 2017; 34:119-127. https://doi.org/ 10.3126/nvj.v34i0.22911
  44. Kumar A, Kumar R, Singh J, Kumar A. Prevalence of crustacean parasite (Argulus japonicus) in arable carp fishes in Tarai region of Uttarakhand, India: Treatments and management. J Entomol Zool Stud. 2018; 6(3):1079-1082. https://www.thepharmajournal.com/archives/2023/vol12issue1/PartAJ/12-2-452-464.pdf
  45. Gultom DS. Pemberian ekstrak kasar daun tembakau (Nicotiana tabacum) untuk mengendalikan infestation Argulus sp. pada ikan komet (Carassius auratus auratus). J Aquac Manag and Technol. 2018; 7(1):64-70. https://ejournal3.undip.ac.id/index.php/jamt/article/view/20370
  46. Alzayyadi S. Study of the effect of Nerium oleander extract in the destruction of Argulus foliaceus and Lernaea cyprinacea in ornamental fish. Int J Res Pharm Sci. 2019; 10(4):3073-3077. https://doi.org/10.26452/ijrps.v10i4.1596
  47. Ulkhaq MF, Budi DS, Kenconojati H, Hanif M. Penggunaan Bubuk Abate Untuk Menurunkan Derajat Infestasi dan Merusak Organ Parasit Argulus yang Menginfestasi Ikan Mas (Cyprinus carpio). J Aquac Fish Health. 2019; 8(1):15-23. https://doi.org/10.20473/jafh.v8i1.11751
  48. Kumari P, Kumar S, Ramesh M, Shameena S, Deo AD, Rajendran KV, Raman RP. Antiparasitic effect of aqueous and organic solvent extracts of Azadirachta indica leaf against Argulus japonicus in Carassius auratus. Aquac. 2019; 511:1-7. https://doi.org/10.1016/j.aquaculture.2019.05.060
  49. Setyawati F, Kismiyati K, Subekti S. Utilization of Moringa oleifera leaf extract on decreasing infestation of Argulus japonicus in goldfish (Carassius auratus). Aquasains. 2019; 8(1):769-774. https://dx.doi.org/10.23960/aqs.v8i1.p769-774​
  50. Devi G, Balasundaram C, Harikrishnan R. Effect of madecassic acid on innate-adaptive immune response and cytokine gene expression in Labeo rohita against Argulus siamensis. Recent Trends Biotechnology. 2020; 8:1-11. https://meddocsonline.org/ebooks/recent-trends-in-biotechnology/effect-of-madecassic-acid-on-innate-adaptive-immune-response-and-cytokine-gene-expression-in-labeo-rohita- against-argulus-siamensis.pdf
  51. Insivitawati E, Setyastuti TA. The effect of noni extract (Morinda citrifolia) for treatment of parasite Argulus in comet fish (Carassius auratus). Coas. Ocean J. 2020; 4(2):64-70. https://doi.org/10.29244/COJ.4.2.76-82
  52. Mamun MA, Nasren S, Rathore SS, Srinivasiah K. Histopathological Studies of Pond Reared Indian Major Carp, Catla catla Infested with Argulus japonicus and Trial for Argulosis Treatment. Punjab J Zool Univ. 2021; 36(2):131-139. https://dx.doi.org/10.17582/journal.pujz /2021.36.2.131.139
  53. Harahap K, Febri SP, Komariyah S, Hasri I. The Effectiveness of using Papaya Leaf Extract (Carica papaya L.) as Infestation Control Argulus sp. in Koi Fish (Cyprinus carpio). J Airaha. 2021; 10(2):177-184. https://doi.org/10.15578/ja.v10i02.261
  54. Rahmawati I, Putri A, Roeswandono R, Sasmita R. Pengendalian infestation ektoparasit (Argulus sp.) Pada benih ikan mas (Cyprinus carpio) dengan menambahkan garam (NaCl) di paso ikan hias gunung saree Surabaya. J Vitek bidang Kedokteran Hewan. 2021; 11(2):20-25. https://doi.org/10.30742/jv.v11i2.80
  55. Dewi RR, Siallagan W, Suryanto D. The efficacy of sodium chloride application in the control of fish lice (Argulus sp.) infection on tilapia (Oreochromis niloticus). Aquatic Sci J. 2018; 5(1):4-7. https://doi.org/10.29103/aa.v5i1.584
  56. Harlina H, Hadijah S, Kamaruddin K, Nurhidayah N, Nurwahyudin N. Prevalensi give intense Ektoparasit Pada Ikan Nila ( Oreocromis Niloticus ) Yang Diberi Pakan Bungkil Kelapa Hasil Fermentasi dalam Wadah Terkontrol. J Ind Trop Fisher. 2019; 2(2):192-205. https://doi.org/10.33096/joint-fish.v2i2.52
  57. Safia W. Pengaruh Dose Ekstrak Daun Mengkudu (Morinda citrifolia) Terhadap Serangan Ektoparasit Pada Ikan Nila (Oreochromis niloticus). AquaMarine: J. 2022; 9(2):24-32. https://doi.org/10.55340/aqmj.v11i2.1072
  58. Tang KN, O’Connor MR, Landolfi J, Van-Bonn W. Safety and efficacy of milbemycin oxime and lufenuron to treat Argulus spp. infestation in smooth back river stingrays (Potamotrygon orbignyi) and Magdalena River stingrays (Potamotrygon magdalenae). J Zoo Wild Med. 2019; 50(2):383-388. https://doi.org/10.1638/2018-0162
  59. Inaya AFN, Subekti S. Pengaruh perasan biji pepaya ( Carica papaya ) terhadap kerusakan tellur Argulus japonicus. J Ilmiah Perikanan dan Kelautan. 2015; 7(2):159-164. https://doi.org/10.20473/jipk.v7i2.11200
  60. Pereira EC, Oliveira EC, Sousa EMO, Silva HNP, Corrêa LL, Mourão RHV, Silva LVF. Lethal concentration of Cymbopogon citratus ( Poaceae ) essential oil for Dolops discoidalis and Argulus sp. (Crustacea: Argulidae). J Fish Dis. 2020; 43(12):1497-1504. https://doi.org/10.1111/jfd.13250
  61. Idris F, Mahasri G. Different concentration influence of Moringa oleifera leaf aqueous extract immersion against Argulus japonicus egg damage. Earth and Environmental Science. 2020; 441(1):1-7. https://doi.org/10.1088/1755-1315/441/1/012131
  62. Kumari P, Kumar S, Deo AD, Rajendran KV, Raman RP. Antiparasitic potentiality of ethanol and methanol extracts of Azadirachta indica leaf for eggs and copepodid stage of Argulus japonicus: in vitro study. J Parasitic Dis. 2021; 45:769-777. https://doi.org/10.1007/s12639-021-01355-4
  63. Sarkar DJ, Bera AK, Baitha R, Das BK. Synthesis optimization of PEG diblock copolymer-based nanoemulsion of cypermethrin through central composite design and bioefficacy evaluation against fish ectoparasite Argulus bengalensis. Chemical Papers . 2022; 76(11):6809-6820. https://doi.org/10.1007/s11696-022-02369-9
  64. Vega-Villasante F, Ruiz-González LE, Chong-Carrillo O, Basto-Rosales MER, Palma-Cancino DJ, Tintos -Gómez A, et al. Biology and use of the Pacific fat sleeper Dormitator latifrons (Richardson, 1844): state of the art review. Lat Am J Aqua Ans . 2021; 49(3):391-403. http://dx.doi.org/10.3856/vol49-issue3-fulltext-2637
  65. Aréchiga-Palomera MA, Nieves-Rodríguez KN, Chong-Carrillo O, Nolasco-Soria H, Peña-Marín ES, Álvarez-González CA, et al. Dormitator latifrons (Richardson, 1844) a Pacific fat sleeper, but skinny in research: a scientometric study. Lat Am J Aqua. Res. 2022; 50(3):451-460. http://dx.doi.org/10.3856/vol50-issue3-fulltext-2784
  66. Lamothe-Argumedo R. Helmintos animal parasites​ wild. In: González-Soriano, E. (eds.) Natural History of the Tuxtlas IBUNAM: Mexico; 1997.
  67. Pérez-Ponce de León GL, García-Prieto B, Mendoza-Garfias V, Léon- Règagnon G, Pulido-Flores C, Aranda-Cruz, García-Vargas F. IX. Biodiversity of parasitic helminths of marine and estuarine fish from Chamela Bay, Jalisco. Faunistic lists of Mexico. UNAM, Mexico; 1999. https://biblat.unam.mx/es/revista/listados-faunisticos-de-mexico/articulo/ix-biodiversidad-de-helmintos-parasitos-de-peces-marinos-y-estuarinos-de-la- bahia-de-chamela-jalisco
  68. Reverter M, Tapissier-Bontemps N, Lecchini D, Banaigs B, Sasal P. Biological and ecological roles of external fish mucus: a review. Fishes. 2018; 3(4):41. https://doi.org/10.3390/fishes3040041
  69. Valladão GMR, Gallani SU, Pilarski F. Phytotherapy as an alternative for treating fish disease. J. Vet Pharmacol Ther. 2015; 38(5):417-428. https://doi.org/10.1111/jvp.12202
  70. Buchmann K. Control of parasitic diseases. Aqua Parasitol . 2022; 149(14):1985-1997. https://doi.org/10.1017/S0031182022001093
  71. Wainwright DK, Lauder GV. Mucus matters: the slippery and complex surfaces of fish. Functional Surfaces in Biology III: Diversity of the Physical Phenomena , 2017; 223-246. https://doi.org/10.1007/978-3-319-74144-4_10
  72. Thakur K, Sharma A, Sharma D, Brar B, Choudhary K, Sharma AK, et al. An insight into the interaction between Argulus siamensis and Labeo Rohita offers future therapeutic strategy to combat argulosis. Aquac Int 2023; 31(3):1607-1621. https://doi.org/ 10.1007/s10499-022-01043-x
  73. Silva JOS, Stabile BHM, da Graça RJ, Oliveira AV, Takemoto RM. Ornamental fish mortality reveals an old parasite introduction: A case study of Koi carp and fish louse. Vet Parasitol Reg Stud Reports. 2024; 51:101034. https://doi.org/10.1016/j.vprsr.2024.101034
  74. Hanson SK, Hill JE, Watson CA, Yanong RP, Endris R. Evaluation of emamectin benzoate for the control of experimentally induced infestations of Argulus sp. in goldfish and koi carp. J Aquat Anim Health. 2011; 23(1): 30-34. https://doi.org/10.1080/08997659.2011.568858
  75. Grano-Maldonado MI, Andrade-Gómez L, Mendoza-Garfias B, Solórzano-García B, García-Pantoja A, Nieves-Soto M, Pérez-Ponce de León G. Metazoan Parasites of the Pacific Silverstripe Halfbeak, Hyporhamphus naos (Osteichthyes: Hemiramphidae) in Mazatlán Bay, Mexico. Pacific Science. 2024; 77(4):441-451. https://doi.org/10.2984/77.4.6
  76. Patra A, Mondal A, Banerjee S, Adikesavalu H, Joardar SN, Abraham TJ. Molecular characterization of Argulus bengalensis and Argulus siamensis (Crustacea: Argulidae) infecting the cultured carps in West Bengal, India using 18S rRNA gene sequences. Mol. Biol. Res. Commun . 2016; 5(3):156-166. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5219910/
  77. Wang L, Hu Z, Wang Z, Zhu P, Wei G, Fan X, Huang J, Wang R, Wang H, Xie Y. Complete Mitogenome sequencing of the fish louse Argulus japonicus (Crustacea: Branchiura): Comparative analyzes and phylogenetic implications. Front Vet Sci. 2024; 25 (11):1376898. https://doi.org/10.3389/fvets.2024.1376898.
  78. Revault J, Desdevises Y, Magnanou É. Link between bacterial communities and contrasted loads in ectoparasitic monogeneans from the external mucus of two wild sparid species (Teleostei). Anim. Microbiome. 2024; 6(42):1-15. https://doi.org/10.1186/s42523-024-00329-0
  79. Poddubnaya LG, Hemmingsen W, Gibson DI. Ultrastructural observations of the attachment organs of the monogenean Rajonchocotyle emarginata (Olsson, 1876) (Polyopisthocotylea : Hexabothriidae), a gill parasite of rays. J Parasitol Res. 2017; 115:2285-2297. https://doi.org/10.1007/s00436-016-4973-x
  80. Faruk MAR, Anka IZ. An overview of diseases in fish hatcheries and nurseries. Fundamental Appl Agric. 2017; 2(3):311-316. https://doi.org/10.5455/faa.277539
  81. Petitjean Q, Jean S, Gandar A, Côte J, Laffaille P, Jacquin L. Stress responses in fish: From molecular to evolutionary processes. Sci Total Environ. 2019; 684:371-380. https://doi.org/10.1016/j.scitotenv.2019.05.357
  82. Fore M, Frank K, Norton T, Svendsen E, Alfredsen JA, Dempster T, Berckmans D. Precision fish farming: A new framework to improve production in aquaculture. Biosyst Eng. 2018; 173:176-193. https://doi.org/10.1016/j.biosystemseng.2017.10.014
  83. Ammerman CB, Miller SM. Biological availability of minor mineral ions: A review. J Anim Sci. 1972; 35(3):681-694. https://doi.org/10.2527/jas1972.353681x
  84. Tavares ‐ Dias M. Toxicity, physiological, histopathological and antiparasitic effects of the formalin, a chemotherapeutic of fish aquaculture. Aquac Ans. 2021; 52(5):1803-1823. https://doi.org/10.1111/are.15069
  85. Soares PRL, de Andrade ALC, Santos TP, da Silva SCBL, da Silva JF, Dos Santos AR, Cadena PG. Acute and chronic toxicity of the benzoylurea pesticide, lufenuron, in the fish, Colossoma macropomum. Chemosphere. 2016; 161:412-421. https://doi.org/10.1016/j.chemosphere.2016.07.033
  86. Wafer LN, Whitney JC, Jensen VB. Fish Lice (Argulus japonicus) in Goldfish (Carassius auratus). Comp Med. 2015; 65(2):93-95. https://pubmed.ncbi.nlm.nih.gov/25926394/

Sistema OJS 3.4.0.3 - Metabiblioteca |