Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Efectos de la oleorresina de copaiba sobre la fermentación ruminal in vitro en bovinos

Effects of copaiba oleoresin on in vitro ruminal fermentation in bovine



Cómo citar
Jesus Coelho, G., Castillo Vargas, J. A., Alves da Silva, M., Silva Santos , V. F., Carneiro da Silva, T. R., Silva de Souza, H. G., da Silva Rosa, J. J., Costa de Araújo, T., Vilarindo de Sousa, S. ., Pereira Maciel, R., & Mezzomo, R. (2025). Efectos de la oleorresina de copaiba sobre la fermentación ruminal in vitro en bovinos. Revista MVZ Córdoba, 30(1), e3532. https://doi.org/10.21897/rmvz.3532

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Gabriela Jesus Coelho
Julián Andrés Castillo Vargas
Mariane Alves da Silva
Victória Fideles Silva Santos
Thaynara Ribeiro Carneiro da Silva
Hanita Garibalde Silva de Souza
José Jobson da Silva Rosa
Tiago Costa de Araújo
Sheila Vilarindo de Sousa
Raylon Pereira Maciel
Rafael Mezzomo

Gabriela Jesus Coelho,

Universidade Federal Rural da Amazônia (UFRA); Department of Animal Science, Parauapebas, PA, Brazil.


Julián Andrés Castillo Vargas,

Universidade Estadual Vale do Acaraú; Center for Agricultural and Biological Sciences, Acaraú, CE, Brazil.


Mariane Alves da Silva,

Universidade Federal Rural da Amazônia (UFRA); Department of Animal Science, Parauapebas, PA, Brazil.


Victória Fideles Silva Santos ,

Universidade Federal Rural da Amazônia (UFRA); Department of Animal Science, Parauapebas, PA, Brazil.


Thaynara Ribeiro Carneiro da Silva,

Universidade Federal Rural da Amazônia (UFRA); Department of Animal Science, Parauapebas, PA, Brazil.


Hanita Garibalde Silva de Souza,

Universidade Federal Rural da Amazônia (UFRA); Department of Animal Science, Parauapebas, PA, Brazil.


José Jobson da Silva Rosa,

Universidade Federal Rural da Amazônia (UFRA); Department of Animal Science, Parauapebas, PA, Brazil.


Tiago Costa de Araújo,

Universidade Federal Rural da Amazônia (UFRA); Department of Animal Science, Parauapebas, PA, Brazil.


Sheila Vilarindo de Sousa,

Universidade Federal Rural da Amazônia (UFRA); Department of Animal Science, Parauapebas, PA, Brazil.


Raylon Pereira Maciel,

Universidade Federal Rural da Amazônia (UFRA); Department of Animal Science, Parauapebas, PA, Brazil.


Rafael Mezzomo,

Universidade Federal Rural da Amazônia (UFRA); Department of Animal Science, Parauapebas, PA, Brazil.


Objetivo. Los extractos de plantas pueden modular benéficamente la fermentación ruminal. Por lo tanto, este estudio evaluó los efectos de diferentes dosis de oleorresina de copaiba sobre la dinámica de la fermentación ruminal in vitro en bovinos. Materiales y métodos. Para ello, cuatro dosis fueron evaluadas: 0, 30, 300 y 3000 mg de oleorresina de copaiba/L de inóculo de incubación. Fue realizado un ensayo para determinar la degradabilidad in vitro de la materia seca (IVDDM). Se determinaron las concentraciones de ácidos grasos volátiles (AGV) y nitrógeno amoniacal (NH3-N) en tres tiempos de incubación (6,24 y 48h).  Resultados. La dosis de 3000 mg/L produjo una reducción de la IVDDM en todos los tiempos de incubación (p<0.05). La dosis de 30 mg/L no redujo la IVDDM en comparación con el tratamiento control (p>0.05), excepto a las 6h de incubación. A las 24 h de incubación, la concentración de 30 mg/L produjo una mayor concentración de acetato (p<0.05), mientras que las concentraciones de 30, 300 y 3000 mg/L generaron mayores concentraciones de propionato (p<0.05) en comparación con el tratamiento control. Las concentraciones de butirato fueron mayores (p<0.05) con 300 y 3000 mg/L a las 6 h de incubación. La dosis de 3000 mg/L redujo la concentración de NH3-N a las 6h y 24h de incubación (p<0.05). Conclusiones. Eel presente estudio revelan que la oleorresina de copaiba afecta la dinámica de la fermentación ruminal en bovinos. La concentración de 3000 mg/L reduce drásticamente la IVDDM, lo que puede ser perjudicial para la fermentación ruminal. 


Visitas del artículo 112 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Reuben RC, Elghandour MMMY, Alqaisi O, Cone JW, Márquez O, Salem AZM. Influence of microbial probiotics on ruminant health and nutrition: sources, mode of action and implications. J Sci Food Agric. 2022; 102(4):1319–1340. https://doi.org/10.1002/jsfa.11643
  2. Henderson B, Golub A, Pambudi D, Hertel T, Godde C, Herrero M, et al. The power and pain of market-based carbon policies: A global application to greenhouse gases from ruminant livestock production. Mitig. Adapt. Strateg. Glob. Change. 2018; 23:349–369. https://doi.org/10.1007/s11027-017-9737-0
  3. Mehrabi Z, Herrero M, Ramankutty N. Livestock policy for sustainable development. Nat Food. 2020; 1:160–165. https://doi.org/10.1038/s43016-020-0042-9
  4. Wang Z, Li X, Zhang L, Wu J, Zhao S, Jiao T. Effect of oregano oil and cobalt lactate on sheep in vitro digestibility, fermentation characteristics and rumen microbial community. Animals. 2022; 12(1):118. https://doi.org/10.3390/ani12010118
  5. Cobellis G, Trabalza-Marinucci M, Yu Z. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Sci Total Envir. 2016; 545:556-568. https://doi.org/10.1016/j.scitotenv.2015.12.103
  6. Leitão DSTC, Siqueira FC, Sousa SHB, Mercadante AZ, Chisté RC, Lopes AS. Amazonian Eryngium foetidum leaves exhibited very high contents of bioactive compounds and high singlet oxygen quenching capacity. Inter J Food Prop. 2020; 23(1):1452-1464. https://doi.org/10.1080/10942912.2020.1811311
  7. Quemel GKC, Costa ABP, Teixeira IF, Machado IN, Machado TN, Machado VS et al. Propriedades medicinais do óleo da Copaifera Langsdorfii: uma revisão integrativa da literatura. Braz J Heal Review. 2021; 4(3):10490–10508. https://doi.org/10.34119/bjhrv4n3-072
  8. Tobouti PL, de Andrade Martins TC, Pereira TJ, Mussi MCM. Antimicrobial activity of copaiba oil: A review and a call for further research. Biomedicine & Pharmacotherapy. 2017; 94:93–99. https://doi.org/10.1016/j.biopha.2017.07.092
  9. Urasaki Y, Beaumont C, Workman M, Talbot JN, Hill DK, Le TT. Fast-acting and receptor-mediated regulation of neuronal signaling pathways by copaiba essential oil. Inter J Mol Scie. 2020; 21:2259. https://doi.org/10.3390/ijms21072259
  10. Oliveira ER, Abreu FDSS, Marques OFC, Silva JT, Durães HF, Neves NF et al. Degradabilidade e digestibilidade de dietas para cordeiros confinados suplementados com níveis crescentes de óleo de copaíba (Copaifera sp.). Braz J Anim Envi Rese. 2020; 3:2152−2164. https://doi.org/10.34188/bjaerv3n3-126
  11. Oliveira E, Abreu F, Gabriel A, Marques O, Silva J, Neves N et al. Intake, Digestibility, and Rumen Metabolism of Feedlot Lambs Supplemented either Monensin or Increasing Doses of Copaiba (Copaifera spp.) Essential oil. Iran J Appl Anim Scie. 2021; 12(1):87-95. https://dorl.net/dor/20.1001.1.2251628.2022.12.1.10.9
  12. Lima FEOD, Goes RHDT, Gandra JR, Penha DDS, Oliveira RTD, Gressler MGDM, Silva TIS et al. Inclusion of copaiba oil (Copaifera sp.) as additive in supplements for cattle on pasture. Revi Bras Saúd Produ Anim. 2018; 19:178−192. https://doi.org/10.1590/S1519-99402018000200004
  13. Valadares Filho SC, Silva LFC, Lopes SA, Gionbelli MP, Rotta PP, Marcondes MI et al. BR-CORTE 3.0. Cálculo de exigências nutricionais, formulação de dietas e predição de desempenho de zebuínos puros e cruzados. 3rd ed. Viçosa, MG: UFV; 2016.
  14. Terry RA, Tilley JMA. The digestibility of the leaves and stems of perennial ryegrass, cocksfoot, timothy, tall fescue, lucerne and sainfoin, as measured by an in vitro procedure. Gras Fora Scie. 1964; 19:363–372. https://doi.org/10.1111/j.1365-2494.1964.tb01188.x
  15. McDougall EI. Studies on ruminant saliva. 1. The composition and output of sheep’s saliva. Biochem J. 1948; 43(1):99-109. https://doi.org/10.1042/bj0430099
  16. Vargas JAC, Leite GP, Coelho GJ, Araújo TC, Gomes DI, Alves KS, et al. Technical note: Evaluation of an alternative automatic heating-stirring system in the determination of in vitro ruminal dry matter digestibility of forages using the Tilley and Terry method. Acta Sci, Anim Sci. 2023; 45(1):e61195. https://doi.org/10.4025/actascianimsci.v45i1.61195
  17. Detmann E, Silva LFC, Rocha GC, Palma MNN, Rodrigues JPP. Métodos para análise de alimentos. 2nd ed. Visconde do Rio Branco, MG: Suprema; 2021.
  18. Vargas JAC, Araújo TC, Mezzomo R. Extraction, identification, and quantification of volatile fatty acids (VFA) in rumen fluid samples using Reverse Phase High-Performance Liquid Chromatography with Diode Array Detector (RP HPLC-DAD). Nat Proto Exch. 2020; 1:1–10. https://doi.org/10.21203/rs.3.pex-1121/v1
  19. Soltan YA, Natel AS, Araujo RC, Morsy AS, Abdalla AL. Progressive adaptation of sheep to a microencapsulated blend of essential oils: Ruminal fermentation, methane emission, nutrient digestibility, and microbial protein synthesis. Ani Feed Sci Tech. 2018; 237:8–18. https://doi.org//10.1016/j.anifeedsci.2018.01.004
  20. Zhou R, Wu J, Lang X, Liu L, Casper DP, Wang C et al. Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community. J Dairy Sci. 2020; 103:2303–2314. https://doi.org/10.3168/jds.2019-16611
  21. Delgadillo-Ruiz L, Bañuelos-Valenzuela R, Gallegos-Flores P, Echavarría-Cháirez F, Meza-López C, Gaytán-Saldaña N. Modification of ruminal fermentation in vitro for methane mitigation by adding essential oils from plants and terpenoid compounds. Aban Vete. 2021; 11:e107. https://doi.org/10.21929/abavet2021.9
  22. Benetel G, Silva TDS, Fagundes GM, Welter KC, Melo FA, Lobo AA et al. Essential oils as in vitro ruminal fermentation manipulators to mitigate methane emission by beef cattle grazing tropical grasses. Molecules. 2022; 27:2227. https://doi.org/10.3390/molecules27072227
  23. Ku-Vera JC, Jiménez-Ocampo R, Valencia-Salazar SS, Montoya-Flores MD, Molina-Botero IC, Arango J, et al. Role of Secondary Plant Metabolites on Enteric Methane Mitigation in Ruminants. Front Vet Sci. 2020;7:560472. https://doi.org/10.3389/fvets.2020.00584
  24. Ishlak A, Günal M, AbuGhazaleh AA. The effects of cinnamaldehyde, monensin and quebracho condensed tannin on rumen fermentation, biohydrogenation and bacteria in continuous culture system. Anim Feed Sci Tech. 2015; 207:31–40. https://doi.org/10.1016/j.anifeedsci.2015.05.023
  25. Vargas JE, Andrés S, López-Ferreras L, López S. Effects of supplemental plant oils on rumen bacterial community profile and digesta fatty acid composition in a continuous culture system (RUSITEC). Anaerobe. 2020; 61:102143. https://doi.org/10.1016/j.anaerobe.2019.102143
  26. Mendonça DE, Onofre SB. Atividade antimicrobiana do óleo-resina produzido pela copaiba- Copaifera multijuga Hayne (Leguminosae). Rev Brasi Farma. 2009; 19:577−581. https://doi.org/10.1590/S0102-695X2009000400012
  27. Guimarães AL, Cunha EA, Matias FO, Garcia PG, Danopoulos P, Swikidisa R et al. Antimicrobial Activity of Copaiba (Copaifera officinalis) and Pracaxi (Pentaclethra macroloba) Oils against Staphylococcus Aureus: Importance in Compounding for Wound Care. Int J Phar Comp. 2016; 20:58-62. https://europepmc.org/article/med/27125055
  28. Liu H, Ran T, Zhang C, Yang W, Wu X, Degen A et al. Comparison of rumen bacterial communities between yaks (Bos grunniens) and Qaidam cattle (Bos taurus) fed a low protein diet with different energy levels. Fron Micr. 2022; 13:982338. https://doi.org/10.3389/fmicb.2022.982338
  29. Li Y, Gao J, Lv J, Lambo MT, Wang Y, Wang L, et al. Replacing soybean meal with high-oil pumpkin seed cake in the diet of lactating Holstein dairy cows modulated rumen bacteria and milk fatty acid profile. J Dairy Sci. 2023; 106(3):1803–1814. https://doi.org/10.3168/jds.2022-22503

Sistema OJS 3.4.0.3 - Metabiblioteca |