Efectos de la oleorresina de copaiba sobre la fermentación ruminal in vitro en bovinos
Effects of copaiba oleoresin on in vitro ruminal fermentation in bovine

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Mostrar biografía de los autores
Objetivo. Los extractos de plantas pueden modular benéficamente la fermentación ruminal. Por lo tanto, este estudio evaluó los efectos de diferentes dosis de oleorresina de copaiba sobre la dinámica de la fermentación ruminal in vitro en bovinos. Materiales y métodos. Para ello, cuatro dosis fueron evaluadas: 0, 30, 300 y 3000 mg de oleorresina de copaiba/L de inóculo de incubación. Fue realizado un ensayo para determinar la degradabilidad in vitro de la materia seca (IVDDM). Se determinaron las concentraciones de ácidos grasos volátiles (AGV) y nitrógeno amoniacal (NH3-N) en tres tiempos de incubación (6,24 y 48h). Resultados. La dosis de 3000 mg/L produjo una reducción de la IVDDM en todos los tiempos de incubación (p<0.05). La dosis de 30 mg/L no redujo la IVDDM en comparación con el tratamiento control (p>0.05), excepto a las 6h de incubación. A las 24 h de incubación, la concentración de 30 mg/L produjo una mayor concentración de acetato (p<0.05), mientras que las concentraciones de 30, 300 y 3000 mg/L generaron mayores concentraciones de propionato (p<0.05) en comparación con el tratamiento control. Las concentraciones de butirato fueron mayores (p<0.05) con 300 y 3000 mg/L a las 6 h de incubación. La dosis de 3000 mg/L redujo la concentración de NH3-N a las 6h y 24h de incubación (p<0.05). Conclusiones. Eel presente estudio revelan que la oleorresina de copaiba afecta la dinámica de la fermentación ruminal en bovinos. La concentración de 3000 mg/L reduce drásticamente la IVDDM, lo que puede ser perjudicial para la fermentación ruminal.
Visitas del artículo 112 | Visitas PDF
Descargas
- Reuben RC, Elghandour MMMY, Alqaisi O, Cone JW, Márquez O, Salem AZM. Influence of microbial probiotics on ruminant health and nutrition: sources, mode of action and implications. J Sci Food Agric. 2022; 102(4):1319–1340. https://doi.org/10.1002/jsfa.11643
- Henderson B, Golub A, Pambudi D, Hertel T, Godde C, Herrero M, et al. The power and pain of market-based carbon policies: A global application to greenhouse gases from ruminant livestock production. Mitig. Adapt. Strateg. Glob. Change. 2018; 23:349–369. https://doi.org/10.1007/s11027-017-9737-0
- Mehrabi Z, Herrero M, Ramankutty N. Livestock policy for sustainable development. Nat Food. 2020; 1:160–165. https://doi.org/10.1038/s43016-020-0042-9
- Wang Z, Li X, Zhang L, Wu J, Zhao S, Jiao T. Effect of oregano oil and cobalt lactate on sheep in vitro digestibility, fermentation characteristics and rumen microbial community. Animals. 2022; 12(1):118. https://doi.org/10.3390/ani12010118
- Cobellis G, Trabalza-Marinucci M, Yu Z. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Sci Total Envir. 2016; 545:556-568. https://doi.org/10.1016/j.scitotenv.2015.12.103
- Leitão DSTC, Siqueira FC, Sousa SHB, Mercadante AZ, Chisté RC, Lopes AS. Amazonian Eryngium foetidum leaves exhibited very high contents of bioactive compounds and high singlet oxygen quenching capacity. Inter J Food Prop. 2020; 23(1):1452-1464. https://doi.org/10.1080/10942912.2020.1811311
- Quemel GKC, Costa ABP, Teixeira IF, Machado IN, Machado TN, Machado VS et al. Propriedades medicinais do óleo da Copaifera Langsdorfii: uma revisão integrativa da literatura. Braz J Heal Review. 2021; 4(3):10490–10508. https://doi.org/10.34119/bjhrv4n3-072
- Tobouti PL, de Andrade Martins TC, Pereira TJ, Mussi MCM. Antimicrobial activity of copaiba oil: A review and a call for further research. Biomedicine & Pharmacotherapy. 2017; 94:93–99. https://doi.org/10.1016/j.biopha.2017.07.092
- Urasaki Y, Beaumont C, Workman M, Talbot JN, Hill DK, Le TT. Fast-acting and receptor-mediated regulation of neuronal signaling pathways by copaiba essential oil. Inter J Mol Scie. 2020; 21:2259. https://doi.org/10.3390/ijms21072259
- Oliveira ER, Abreu FDSS, Marques OFC, Silva JT, Durães HF, Neves NF et al. Degradabilidade e digestibilidade de dietas para cordeiros confinados suplementados com níveis crescentes de óleo de copaíba (Copaifera sp.). Braz J Anim Envi Rese. 2020; 3:2152−2164. https://doi.org/10.34188/bjaerv3n3-126
- Oliveira E, Abreu F, Gabriel A, Marques O, Silva J, Neves N et al. Intake, Digestibility, and Rumen Metabolism of Feedlot Lambs Supplemented either Monensin or Increasing Doses of Copaiba (Copaifera spp.) Essential oil. Iran J Appl Anim Scie. 2021; 12(1):87-95. https://dorl.net/dor/20.1001.1.2251628.2022.12.1.10.9
- Lima FEOD, Goes RHDT, Gandra JR, Penha DDS, Oliveira RTD, Gressler MGDM, Silva TIS et al. Inclusion of copaiba oil (Copaifera sp.) as additive in supplements for cattle on pasture. Revi Bras Saúd Produ Anim. 2018; 19:178−192. https://doi.org/10.1590/S1519-99402018000200004
- Valadares Filho SC, Silva LFC, Lopes SA, Gionbelli MP, Rotta PP, Marcondes MI et al. BR-CORTE 3.0. Cálculo de exigências nutricionais, formulação de dietas e predição de desempenho de zebuínos puros e cruzados. 3rd ed. Viçosa, MG: UFV; 2016.
- Terry RA, Tilley JMA. The digestibility of the leaves and stems of perennial ryegrass, cocksfoot, timothy, tall fescue, lucerne and sainfoin, as measured by an in vitro procedure. Gras Fora Scie. 1964; 19:363–372. https://doi.org/10.1111/j.1365-2494.1964.tb01188.x
- McDougall EI. Studies on ruminant saliva. 1. The composition and output of sheep’s saliva. Biochem J. 1948; 43(1):99-109. https://doi.org/10.1042/bj0430099
- Vargas JAC, Leite GP, Coelho GJ, Araújo TC, Gomes DI, Alves KS, et al. Technical note: Evaluation of an alternative automatic heating-stirring system in the determination of in vitro ruminal dry matter digestibility of forages using the Tilley and Terry method. Acta Sci, Anim Sci. 2023; 45(1):e61195. https://doi.org/10.4025/actascianimsci.v45i1.61195
- Detmann E, Silva LFC, Rocha GC, Palma MNN, Rodrigues JPP. Métodos para análise de alimentos. 2nd ed. Visconde do Rio Branco, MG: Suprema; 2021.
- Vargas JAC, Araújo TC, Mezzomo R. Extraction, identification, and quantification of volatile fatty acids (VFA) in rumen fluid samples using Reverse Phase High-Performance Liquid Chromatography with Diode Array Detector (RP HPLC-DAD). Nat Proto Exch. 2020; 1:1–10. https://doi.org/10.21203/rs.3.pex-1121/v1
- Soltan YA, Natel AS, Araujo RC, Morsy AS, Abdalla AL. Progressive adaptation of sheep to a microencapsulated blend of essential oils: Ruminal fermentation, methane emission, nutrient digestibility, and microbial protein synthesis. Ani Feed Sci Tech. 2018; 237:8–18. https://doi.org//10.1016/j.anifeedsci.2018.01.004
- Zhou R, Wu J, Lang X, Liu L, Casper DP, Wang C et al. Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community. J Dairy Sci. 2020; 103:2303–2314. https://doi.org/10.3168/jds.2019-16611
- Delgadillo-Ruiz L, Bañuelos-Valenzuela R, Gallegos-Flores P, Echavarría-Cháirez F, Meza-López C, Gaytán-Saldaña N. Modification of ruminal fermentation in vitro for methane mitigation by adding essential oils from plants and terpenoid compounds. Aban Vete. 2021; 11:e107. https://doi.org/10.21929/abavet2021.9
- Benetel G, Silva TDS, Fagundes GM, Welter KC, Melo FA, Lobo AA et al. Essential oils as in vitro ruminal fermentation manipulators to mitigate methane emission by beef cattle grazing tropical grasses. Molecules. 2022; 27:2227. https://doi.org/10.3390/molecules27072227
- Ku-Vera JC, Jiménez-Ocampo R, Valencia-Salazar SS, Montoya-Flores MD, Molina-Botero IC, Arango J, et al. Role of Secondary Plant Metabolites on Enteric Methane Mitigation in Ruminants. Front Vet Sci. 2020;7:560472. https://doi.org/10.3389/fvets.2020.00584
- Ishlak A, Günal M, AbuGhazaleh AA. The effects of cinnamaldehyde, monensin and quebracho condensed tannin on rumen fermentation, biohydrogenation and bacteria in continuous culture system. Anim Feed Sci Tech. 2015; 207:31–40. https://doi.org/10.1016/j.anifeedsci.2015.05.023
- Vargas JE, Andrés S, López-Ferreras L, López S. Effects of supplemental plant oils on rumen bacterial community profile and digesta fatty acid composition in a continuous culture system (RUSITEC). Anaerobe. 2020; 61:102143. https://doi.org/10.1016/j.anaerobe.2019.102143
- Mendonça DE, Onofre SB. Atividade antimicrobiana do óleo-resina produzido pela copaiba- Copaifera multijuga Hayne (Leguminosae). Rev Brasi Farma. 2009; 19:577−581. https://doi.org/10.1590/S0102-695X2009000400012
- Guimarães AL, Cunha EA, Matias FO, Garcia PG, Danopoulos P, Swikidisa R et al. Antimicrobial Activity of Copaiba (Copaifera officinalis) and Pracaxi (Pentaclethra macroloba) Oils against Staphylococcus Aureus: Importance in Compounding for Wound Care. Int J Phar Comp. 2016; 20:58-62. https://europepmc.org/article/med/27125055
- Liu H, Ran T, Zhang C, Yang W, Wu X, Degen A et al. Comparison of rumen bacterial communities between yaks (Bos grunniens) and Qaidam cattle (Bos taurus) fed a low protein diet with different energy levels. Fron Micr. 2022; 13:982338. https://doi.org/10.3389/fmicb.2022.982338
- Li Y, Gao J, Lv J, Lambo MT, Wang Y, Wang L, et al. Replacing soybean meal with high-oil pumpkin seed cake in the diet of lactating Holstein dairy cows modulated rumen bacteria and milk fatty acid profile. J Dairy Sci. 2023; 106(3):1803–1814. https://doi.org/10.3168/jds.2022-22503