Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Citometría hemática, ionogramas y proteínas séricas en híbridos de tilapia roja alimentados con quitosano en dieta

Hematic cytometry, ionograms, and serum proteins in red tilapia hybrids fed chitosan in their diet



Cómo citar
Méndez-Martínez, Y. ., Casanova-Erazo, M. A. ., Campa-Córdova, A. I. ., Zambrano-Rodriguez, S. K. ., Ordoñez-Iglesias, J. P. ., & Salgado-Beltran, V. A. (2025). Citometría hemática, ionogramas y proteínas séricas en híbridos de tilapia roja alimentados con quitosano en dieta. Revista MVZ Córdoba, 30(1), e3554. https://doi.org/10.21897/rmvz.3554

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Yuniel Méndez-Martínez
Melanie A. Casanova-Erazo
Angel I. Campa-Córdova
Sonia K. Zambrano-Rodriguez
Juan P. Ordoñez-Iglesias
Víctor Abrahan Salgado-Beltran

Yuniel Méndez-Martínez,

Universidad Técnica Estatal de Quevedo (UTEQ), Laboratorio de Acuicultura Experimental, Facultad de Ciencias Pecuarias y Biológicas, Quevedo, Los Ríos, Ecuador.


Melanie A. Casanova-Erazo,

Universidad Técnica Estatal de Quevedo (UTEQ), Laboratorio de Acuicultura Experimental, Facultad de Ciencias Pecuarias y Biológicas, Quevedo, Los Ríos, Ecuador.


Angel I. Campa-Córdova,

Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico.


Sonia K. Zambrano-Rodriguez,

Universidad Técnica Estatal de Quevedo (UTEQ), Laboratorio de Acuicultura Experimental, Facultad de Ciencias Pecuarias y Biológicas, Quevedo, Los Ríos, Ecuador.


Juan P. Ordoñez-Iglesias,

Universidad Técnica Estatal de Quevedo (UTEQ), Laboratorio de Acuicultura Experimental, Facultad de Ciencias Pecuarias y Biológicas, Quevedo, Los Ríos, Ecuador.


Víctor Abrahan Salgado-Beltran,

Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, Baja California Sur, Mexico.


Objetivo. Determinar parámetros hematológicos, ionogramas y proteínas séricas en juveniles híbridos de tilapia roja alimentado con diferentes niveles de quitosano en dieta. Materiales y Métodos. Se emplearon seis niveles (T0-T5) de quitosano (0 “control”, 10, 20, 30, 40, y 50 g∙kg−1) en dieta para los peces, los cuales fueron alimentados durante un periodo de ocho semanas cultivados en laboratorio, para posteriormente realizar análisis de citometría hemática, ionogramas y proteínas séricas. Resultados. Las variables evaluadas mostraron diferencias significativas. La respuesta de hematocrito fue mayor en T2 con de 40.67%, los eritrocitos presentaron un valor mayor en T2 de 4.37∙ul, la hemoglobina presentó una media mayor de 13.53 g∙dL-1para T2, para la variable Volumen Corpuscular Medio (VCM) la media mayor fue de 93.09 fL en T2. La Hemoglobina Corpuscular Media (HCM) se observó una concentración mayor T2 de 30.98 pg y para la Concentración de Hemoglobina Corpuscular Media (CCMH) la media fue de 33.31 g∙dL-1 T2. Los valores de ionogramas mostraron diferencias significativas, para el sodio se alcanzó un valor mayor (162.00 mmol∙L-1) en T2, el hierro que presentó una media mayor (308.33 ug∙dL-1) en T4, el cloro (122 mmol∙L-1) con el T2, el calcio con media superior en T3 (3.83 mmol∙L-1) y potasio T3 y T4 de 11.33 mmol∙L-1. Respecto a proteína el valor mayor fue T3 (6.62 g∙dL-1), albumina T3 (6.40 g∙dL-1) y relación albumina∙globulina T3 de 37.6.  Conclusiones. Los resultados obtenidos indican que la aplicación de quitosano en alimento peletizado para híbridos de tilapia roja les proporciona resultados favorables.


Visitas del artículo 74 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Méndez-Martínez Y, Valenzuela-Barros HA, Cruz-Quintana Y, Botello- Leon A, Orellana-Casto GL, Muñoz-Mestanza RD, Angulo C. Effect of dietary supplementation with organic silicon on the growth performance, blood biochemistry, digestive enzymes, morphohistology, intestinal microbiota and stress resistance in juvenile hybrid tilapia (Oreochromis mossambicus × Oreochromis niloticus). Biology. 2024; 13(7):531. https://doi.org/10.3390/biology13070531
  2. FAO. El Estado Mundial de la Pesca y la Acuicultura. Hacia la Transformación Azul; FAO: Rome: Italy; 2022.
  3. Méndez-Martínez Y, Vera-Veliz AR, Cortés-Jacinto E, Cruz-Quintana Y, Botello-Leon A, Mendoza-Carranza PD, Calvo SN. Growth performance, feed utilisation, digestive and metabolic enzyme activity, and liver morphohistology in hybrid tilapia (Oreochromis mossambicus × Oreochromis niloticus) juveniles fed with the inclusion of chitosan in their diet. Fishes. 2023; 8(11):546. https://doi.org/10.3390/fishes8110546
  4. Lara-Flores M, Novoa M, Guzmán B, López W. Use of the bacteria Streptococcus faecium and Lactobacillus acidophilus, and the yeast Saccharomyces cerevisiae as growth promoters in Nile tilapia (Oreochromis niloticus). Aquaculture. 2003; 216(4):193-201. https://doi.org/10.1016/S0044-8486(02)00277-6
  5. Brum A, Pereira S, Shizuo O, Chagas E, Maia F, Pedreira L, et al. Effect of dietary essential oils of clove basil and ginger on Nile tilapia (Oreochromis niloticus) following challenge with Streptococcus agalactiae. Aquaculture. 2017; 468(1):235-243. https://doi.org/10.1016/j.aquaculture.2016.10.020
  6. Kumari J, Sahoo PK. Dietary levamisole modulates the immune response and disease resistance of Asian catfish Clarias batrachus (Linnaeus). Aquac. Res. 2006; 37(5):500-509. https://doi.org/10.1111/j.1365-2109.2006.01456.x
  7. NRC. Nutrient requirements of fish and shrimp. Washington DC: National Academy Press. National Research Council. 2011. https://nap.nationalacademies.org/catalog/13039/nutrient-requirements-of-fish-and-shrimp
  8. Sakai M. Current research status of fish immunostimulants. Aquaculture. 1999; 172(1):63-92. https://doi.org/10.1016/S0044-8486(98)00436-0
  9. Bullock G, Blazer VS, Tsukuda S, Summerfelt ST. Toxicity of acidified chitosan for cultured rainbow trout (Oncorhynchus mykiss). Aquaculture. 2020; 185(1):273-280. https://doi.org/10.1016/S0044-8486(99)00359-2
  10. Alishahi A, Aider M. Applications of Chitosan in the Seafood Industry and Aquaculture: A Review. Food. Bioprocess Technol. 2012; 5(1):817-830. https://doi.org/10.1007/s11947-011-0664-x
  11. El-Naggar M, Salaah S, El-Shabaka H, El-Rahman FA, Khalil M, Suloma A. Efficacy of dietary chitosan and chitosan nanoparticles supplementation on health status of Nile tilapia, Oreochromis niloticus (L.). Aquac Rep. 2021; 9:100628. https://doi.org/10.1016/j.aqrep.2021.100628
  12. Rimoldi S, Ceccotti C, Brambilla F, Faccenda F, Antonini M, Terova G. Potential of shrimp waste meal and insect exuviae as sustainable sources of chitin for fish feeds. Aquaculture. 2023; 567:739256. https://doi.org/10.1016/j.aquaculture.2023.739256
  13. Enayat-Gholampour T, Fadaei R, Pouladi M, Larijani M, Pagano M, Faggio C. The dietary effect of vitex agnus-castus hydroalcoholic extract on growth performance, blood biochemical parameters, carcass quality, sex ratio, and gonad histology in zebrafish (Danio rerio). Applied Science. 2020; 10:1-10. https://doi.org/10.3390/app10041402
  14. Medina-Robles V, Duarte S, Cruz P. Seminal cryopreservation in freshwater fish: biotechnological, cellular, and biochemical aspects. Orinoquia. 2020; 24:51-78. https://doi.org/10.22579/20112629.630
  15. Méndez-Martínez Y, Pacheco K, Del Barco A, Torres G, Hernández M. Biochemical and immune response in red tilapia (Oreochromis mossambicus × O. niloticus) with dietary chitosan supplementation. Rev.Fac. Agron. 2021; 38:1016-1034. https://doi.org/10.47280/RevFacAgron(LUZ).v38.n4.15
  16. Méndez-Martínez Y, Puente M, Torres-Navarrete YG, Zamora-Zambrano RJ, Botello LA, Ramírez JL. Comparative study of serum biochemical and hematology parameters of Andinoacara rivulatus and Ichthyoelephas humeralis in Los Ríos, Ecuador. Lat Am J Aquat Res. 2022; 50(2):289-300. http://dx.doi.org/10.3856/vol50-issue2-fulltext-2795
  17. Fazio F, Marafioti S, Arfuso F, Piccione G, Faggio C. Comparative study of the biochemical and haematological parameters of four wild Tyrrhenian fish species. Vet Med-Czech. 2013; 58(11):576-581. https://doi.org/10.17221/7139-VETMED
  18. Ramanathan G, Ramalakshmi P, Gopperundevi B, Suresh JI. Production Characterization and Aqua Feed Supplementation of Astaxanthin from Halobacterium salinarium. Int J Curr Microbiol App Sci. 2015; 4(1):56–63. https://www.ijcmas.com/vol-4-3/G.Ramanathan,%20et%20al.pdf
  19. Chan-Jung H, Wang JH, Dai L, Chung-Chiun L. Determination of alanine aminotransferase with an electrochemical nano Ir-C biosensor for the screening of liver diseases. Biosensors. 2011; 1(3):107-117. https://doi.org/10.3390/bios1030107
  20. Banaee M, Tahery S, Nematdoost-Haghi B, Shahafve S, Vaziriyan M. Blood biochemical changes in common carp (Cyprinus carpio) upon co-exposure to titanium dioxide nanoparticles and paraquat. Iranian Journal of Fisheries Sciences. 2019; 18:242-255. https://jifro.areeo.ac.ir/article_118174.html
  21. Conroy, DA. Manual de métodos y técnicas de laboratorio de uso común en la hematología pisciaria. Pharma-fish S.R.L., Maracay; 1998.
  22. Prakash S, Verma AK. Effect of arsenic on serum biochemical parameters of a fresh water cat fish, Mystus vittatus. IJBI. 2020; 2:1-19. https://doi.org/10.46505/IJBI.2020.2102
  23. Aguirre-Guzman G, Carvajal-de-la-Fuente V, Nei-Coronado M, Loredo-Osti JM, Rábago-Castro JL. Hematological and clinical chemistry changes induced by acute stress during handling and capture of catfish (Ictalurus punctatus). Rev MVZ Córdoba. 2016; 21:5345-5354. https://doi.org/10.21897/rmvz.601
  24. Méndez-Martínez Y, Narváez-Narváez RI, Angulo C, Cortés-Jacinto E, Botello-Leon A, Verdecia D, Torres-Navarrete YG. Chemical composition of Tithonia diversifolia (Hemsl.) and its effect on growth performance, feed efficiency and metabolic biochemistry of juvenile hybrid tilapia, Oreochromis mossambicus × Oreochromis niloticus. Not Bot Horti Agrobo. 2023; 51(3):13337. https://doi.org/10.15835/nbha51313337
  25. Kamali-Najafabad M, Imanpoor MR, Taghizadeh V, Alishahi A. Effect of dietary chitosan on growth performance, hematological parameters, intestinal histology and stress resistance of Caspian kutum (Rutilus frisii kutum Kamenskii, 1901) fingerlings. Fish Physiol Biochem. 2016; 42:1063-1071. https://doi.org/10.1007/s10695-016-0197-3
  26. El-Naby A, Naiel FS, Al-Sagheer MAE, Negm SS. Dietary chitosan nanoparticles enhance the growth, production performance, and immunity in Oreochromis niloticus. Aquaculture. 2019; 501:82–89. https://doi.org/10.1016/j.aquaculture.2018.11.014
  27. Abdel-Tawwab M, Razek A, Abdel-Rahman M. Immunostimulatory effect of dietary chitosan nanoparticles on the performance of Nile tilapia, Oreochromis niloticus (L.). Fish Shellfish Immunol. 2019; 88:254–258. https://doi.org/10.1016/j.fsi.2019.02.063
  28. Alaye-Rahy N, Morales-Palacios J.J. Parámetros hematológicos y células sanguíneas de organismos juveniles de pescado blanco (Chirostoma estor estor) cultivados en Pátzcuaro, Michoacán. México. Hidrobiológica. 2013; 23(3):340-347. https://hidrobiologica.izt.uam.mx/index.php/revHidro/article/view/653
  29. Hossam-Eldel N, Abu N, Ali S, Khattab M, Marzouk M. Dietary Immune Nutritive Effect of Chitosan/Chitosan Nanoparticles on the Nile Tilapia: Short-term Exposure. EJABF. 2024; 28(1):157–183. https://doi.org/10.21608/EJABF.2024.336935
  30. Martins L, Nomura T, Myiazaki M, Pilarsky F, Ribeiro K, de Castro P, de Campos F. Physiological and haematological response of Oreochromis niloticus (Osteichthyes: cichlidae) exposed to single and consecutive stress of capture. Acta Scientiarum Anim Sci. 2004; 26(4):449–456. https://doi.org/10.4025/actascianimsci.v26i4.1719
  31. Stanek M, Mazurkiewicz J, Rawski M, Bogucka J, Ziółkowska E, Dankowiakowska A, Kierończyk B. Effect on chitosan on common carp (Cyprinus carpio) fry growth performance, feed utilization and nutriphysiologycal status. Aquac Rep. 2023; 30:101622. https://doi.org/10.1016/j.aqrep.2023.101622
  32. Abdel-Ghany H, El-S, Salem M. Effects of dietary chitosan supplementation on farmed fish; a review. Rev Aquac. 2019; 1(5):1-15. https://doi.org/10.1111/raq.12326
  33. Zaki A, Shatby E, Shatby E. Effect of CS supplemented diet on survival, growth, feed utilization, body composition and histology of sea bass (Dicentrarchus labrax). World J Eng Technol. 2015; 3(4):38–47. https://doi.org/10.4236/wjet.2015.34c005
  34. Wang Y, Li J, Effects of chitosan nanoparticles on survival, growth and meat quality of tilapia, Oreochromis nilotica. Nanotoxicology. 2011; 5(3): 425–431. https://doi.org/10.3109/17435390.2010.530354
  35. Salam A, Rahman A, Paul I, Islam F, Barman K, Rahman Z, et al. Dietary chitosan promotes the growth, biochemical composition, gut microbiota, hematological parameters and internal organ morphology of juvenile Barbonymus gonionotus. PLoS ONE. 2021; 16(11):1-23. https://doi.org/10.1371/journal.pone.0260192
  36. Bhaskaram P. Immunology of iron-deficient subjects. In: R.K. Chandra (Ed.), Nutrition and Immunology. Alan R. Liss Inc., New York; 1988.
  37. Wood RJ, Serfaty-Lacrosniere C. Gastric acidity, atrophic gastritis and calcium absorption. Nutr Rev. 1992; 50:33–40. https://doi.org/10.1111/j.1753-4887.1992.tb02510.x
  38. Hossain MA, Yoshimatsu T. Dietary calcium requirement in fishes. Aquaculture nutrition. 2014; 20(1):1-11. https://doi.org/10.1111/anu.12135
  39. Martemyanov VI. Ranges of regulation of sodium, potassium, calcium, magnesium concentrations in plasma, erythrocytes, and muscle tissue of Rutilus rutilus under natural conditions. Journal of Evolutionary Biochemistry and Physiology. 2001; 37:141-147. https://doi.org/10.1023/A:1017680829971
  40. Xun P, Zhou C, Huan, X, Huang Z, Yu W, Yang Y. et al. Effects of dietary potassium diformate on growth performance, fillet quality, plasma indices, intestinal morphology and liver health of juvenile golden pompano (Trachinotus ovatus). Aquaculture Reports. 2022; 24:101110. https://doi.org/10.1016/j.aqrep.2022.101110
  41. Yang Y, Oh W, Nakajima D, Maeda A, Naka T, Kim CS, et al. Effects of habitual chitosan intake on bone mass, bone-related metabolic markers and duodenum CaBP D9K mRNA in ovariectomized SHRSP rats. J Nutr Sci Vitam. 2002; 48:371–378. https://doi.org/10.3177/jnsv.48.371
  42. Keiji Deuchi, Osamu Kanauchi, Mika Shizukuishi, Eiichi Kobayashi. Continuous and Massive Intake of Chitosan Affects Mineral and Fat-soluble Vitamin Status in Rats Fed on a High-fat Diet. Biosci Biotechnol Biochem. 1995; 59(7):1211-1216. https://doi.org/10.1271/bbb.59.1211
  43. Zaki M, Shatby E, Shatby E. Effect of CS supplemented diet on survival, growth, feed utilization, body composition and histology of sea bass (Dicentrarchus labrax). World J Eng Technol. 2015; 3(4):38–47. https://doi.org/10.4236/wjet.2015.34c005
  44. Martínez-Porchas M, Martínez R, Ramos R. Cortisol and glucose: reliable indicators of fish stress? Pan Am J Aquat Sci. 2009; 4(2):158–178. https://panamjas.org/pdf_artigos/panamjas_4(2)_158-178.pdf
  45. Crivelenti Leandro, Borín Sofia, M. Socha José Javier, Mundim Antonio V. Valores bioquímicos séricos de tilapia del nilo (oreochromis niloticus) en cultivo intensivo. Rev Investig Vet. Perú. 2011; 22(4):318-323. https://doi.org/10.15381/rivep.v22i4.331
  46. Alishahi A, Mirvaghefi A, Tehrani R, Farahmand H, Koshio S, Dorkoosh FA, et al. CS nanoparticle to carry vitamin C through the gastrointestinal tract and induce the non-specific immunity system of rainbow trout (Oncorhynchus mykiss). Carbohydr Polym. 2011; 86(1):142–146. https://doi.org/10.1016/j. carbpol.2011.04.028

Sistema OJS 3.4.0.3 - Metabiblioteca |