Citometría hemática, ionogramas y proteínas séricas en híbridos de tilapia roja alimentados con quitosano en dieta
Hematic cytometry, ionograms, and serum proteins in red tilapia hybrids fed chitosan in their diet

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Mostrar biografía de los autores
Objetivo. Determinar parámetros hematológicos, ionogramas y proteínas séricas en juveniles híbridos de tilapia roja alimentado con diferentes niveles de quitosano en dieta. Materiales y Métodos. Se emplearon seis niveles (T0-T5) de quitosano (0 “control”, 10, 20, 30, 40, y 50 g∙kg−1) en dieta para los peces, los cuales fueron alimentados durante un periodo de ocho semanas cultivados en laboratorio, para posteriormente realizar análisis de citometría hemática, ionogramas y proteínas séricas. Resultados. Las variables evaluadas mostraron diferencias significativas. La respuesta de hematocrito fue mayor en T2 con de 40.67%, los eritrocitos presentaron un valor mayor en T2 de 4.37∙ul, la hemoglobina presentó una media mayor de 13.53 g∙dL-1para T2, para la variable Volumen Corpuscular Medio (VCM) la media mayor fue de 93.09 fL en T2. La Hemoglobina Corpuscular Media (HCM) se observó una concentración mayor T2 de 30.98 pg y para la Concentración de Hemoglobina Corpuscular Media (CCMH) la media fue de 33.31 g∙dL-1 T2. Los valores de ionogramas mostraron diferencias significativas, para el sodio se alcanzó un valor mayor (162.00 mmol∙L-1) en T2, el hierro que presentó una media mayor (308.33 ug∙dL-1) en T4, el cloro (122 mmol∙L-1) con el T2, el calcio con media superior en T3 (3.83 mmol∙L-1) y potasio T3 y T4 de 11.33 mmol∙L-1. Respecto a proteína el valor mayor fue T3 (6.62 g∙dL-1), albumina T3 (6.40 g∙dL-1) y relación albumina∙globulina T3 de 37.6. Conclusiones. Los resultados obtenidos indican que la aplicación de quitosano en alimento peletizado para híbridos de tilapia roja les proporciona resultados favorables.
Visitas del artículo 74 | Visitas PDF
Descargas
- Méndez-Martínez Y, Valenzuela-Barros HA, Cruz-Quintana Y, Botello- Leon A, Orellana-Casto GL, Muñoz-Mestanza RD, Angulo C. Effect of dietary supplementation with organic silicon on the growth performance, blood biochemistry, digestive enzymes, morphohistology, intestinal microbiota and stress resistance in juvenile hybrid tilapia (Oreochromis mossambicus × Oreochromis niloticus). Biology. 2024; 13(7):531. https://doi.org/10.3390/biology13070531
- FAO. El Estado Mundial de la Pesca y la Acuicultura. Hacia la Transformación Azul; FAO: Rome: Italy; 2022.
- Méndez-Martínez Y, Vera-Veliz AR, Cortés-Jacinto E, Cruz-Quintana Y, Botello-Leon A, Mendoza-Carranza PD, Calvo SN. Growth performance, feed utilisation, digestive and metabolic enzyme activity, and liver morphohistology in hybrid tilapia (Oreochromis mossambicus × Oreochromis niloticus) juveniles fed with the inclusion of chitosan in their diet. Fishes. 2023; 8(11):546. https://doi.org/10.3390/fishes8110546
- Lara-Flores M, Novoa M, Guzmán B, López W. Use of the bacteria Streptococcus faecium and Lactobacillus acidophilus, and the yeast Saccharomyces cerevisiae as growth promoters in Nile tilapia (Oreochromis niloticus). Aquaculture. 2003; 216(4):193-201. https://doi.org/10.1016/S0044-8486(02)00277-6
- Brum A, Pereira S, Shizuo O, Chagas E, Maia F, Pedreira L, et al. Effect of dietary essential oils of clove basil and ginger on Nile tilapia (Oreochromis niloticus) following challenge with Streptococcus agalactiae. Aquaculture. 2017; 468(1):235-243. https://doi.org/10.1016/j.aquaculture.2016.10.020
- Kumari J, Sahoo PK. Dietary levamisole modulates the immune response and disease resistance of Asian catfish Clarias batrachus (Linnaeus). Aquac. Res. 2006; 37(5):500-509. https://doi.org/10.1111/j.1365-2109.2006.01456.x
- NRC. Nutrient requirements of fish and shrimp. Washington DC: National Academy Press. National Research Council. 2011. https://nap.nationalacademies.org/catalog/13039/nutrient-requirements-of-fish-and-shrimp
- Sakai M. Current research status of fish immunostimulants. Aquaculture. 1999; 172(1):63-92. https://doi.org/10.1016/S0044-8486(98)00436-0
- Bullock G, Blazer VS, Tsukuda S, Summerfelt ST. Toxicity of acidified chitosan for cultured rainbow trout (Oncorhynchus mykiss). Aquaculture. 2020; 185(1):273-280. https://doi.org/10.1016/S0044-8486(99)00359-2
- Alishahi A, Aider M. Applications of Chitosan in the Seafood Industry and Aquaculture: A Review. Food. Bioprocess Technol. 2012; 5(1):817-830. https://doi.org/10.1007/s11947-011-0664-x
- El-Naggar M, Salaah S, El-Shabaka H, El-Rahman FA, Khalil M, Suloma A. Efficacy of dietary chitosan and chitosan nanoparticles supplementation on health status of Nile tilapia, Oreochromis niloticus (L.). Aquac Rep. 2021; 9:100628. https://doi.org/10.1016/j.aqrep.2021.100628
- Rimoldi S, Ceccotti C, Brambilla F, Faccenda F, Antonini M, Terova G. Potential of shrimp waste meal and insect exuviae as sustainable sources of chitin for fish feeds. Aquaculture. 2023; 567:739256. https://doi.org/10.1016/j.aquaculture.2023.739256
- Enayat-Gholampour T, Fadaei R, Pouladi M, Larijani M, Pagano M, Faggio C. The dietary effect of vitex agnus-castus hydroalcoholic extract on growth performance, blood biochemical parameters, carcass quality, sex ratio, and gonad histology in zebrafish (Danio rerio). Applied Science. 2020; 10:1-10. https://doi.org/10.3390/app10041402
- Medina-Robles V, Duarte S, Cruz P. Seminal cryopreservation in freshwater fish: biotechnological, cellular, and biochemical aspects. Orinoquia. 2020; 24:51-78. https://doi.org/10.22579/20112629.630
- Méndez-Martínez Y, Pacheco K, Del Barco A, Torres G, Hernández M. Biochemical and immune response in red tilapia (Oreochromis mossambicus × O. niloticus) with dietary chitosan supplementation. Rev.Fac. Agron. 2021; 38:1016-1034. https://doi.org/10.47280/RevFacAgron(LUZ).v38.n4.15
- Méndez-Martínez Y, Puente M, Torres-Navarrete YG, Zamora-Zambrano RJ, Botello LA, Ramírez JL. Comparative study of serum biochemical and hematology parameters of Andinoacara rivulatus and Ichthyoelephas humeralis in Los Ríos, Ecuador. Lat Am J Aquat Res. 2022; 50(2):289-300. http://dx.doi.org/10.3856/vol50-issue2-fulltext-2795
- Fazio F, Marafioti S, Arfuso F, Piccione G, Faggio C. Comparative study of the biochemical and haematological parameters of four wild Tyrrhenian fish species. Vet Med-Czech. 2013; 58(11):576-581. https://doi.org/10.17221/7139-VETMED
- Ramanathan G, Ramalakshmi P, Gopperundevi B, Suresh JI. Production Characterization and Aqua Feed Supplementation of Astaxanthin from Halobacterium salinarium. Int J Curr Microbiol App Sci. 2015; 4(1):56–63. https://www.ijcmas.com/vol-4-3/G.Ramanathan,%20et%20al.pdf
- Chan-Jung H, Wang JH, Dai L, Chung-Chiun L. Determination of alanine aminotransferase with an electrochemical nano Ir-C biosensor for the screening of liver diseases. Biosensors. 2011; 1(3):107-117. https://doi.org/10.3390/bios1030107
- Banaee M, Tahery S, Nematdoost-Haghi B, Shahafve S, Vaziriyan M. Blood biochemical changes in common carp (Cyprinus carpio) upon co-exposure to titanium dioxide nanoparticles and paraquat. Iranian Journal of Fisheries Sciences. 2019; 18:242-255. https://jifro.areeo.ac.ir/article_118174.html
- Conroy, DA. Manual de métodos y técnicas de laboratorio de uso común en la hematología pisciaria. Pharma-fish S.R.L., Maracay; 1998.
- Prakash S, Verma AK. Effect of arsenic on serum biochemical parameters of a fresh water cat fish, Mystus vittatus. IJBI. 2020; 2:1-19. https://doi.org/10.46505/IJBI.2020.2102
- Aguirre-Guzman G, Carvajal-de-la-Fuente V, Nei-Coronado M, Loredo-Osti JM, Rábago-Castro JL. Hematological and clinical chemistry changes induced by acute stress during handling and capture of catfish (Ictalurus punctatus). Rev MVZ Córdoba. 2016; 21:5345-5354. https://doi.org/10.21897/rmvz.601
- Méndez-Martínez Y, Narváez-Narváez RI, Angulo C, Cortés-Jacinto E, Botello-Leon A, Verdecia D, Torres-Navarrete YG. Chemical composition of Tithonia diversifolia (Hemsl.) and its effect on growth performance, feed efficiency and metabolic biochemistry of juvenile hybrid tilapia, Oreochromis mossambicus × Oreochromis niloticus. Not Bot Horti Agrobo. 2023; 51(3):13337. https://doi.org/10.15835/nbha51313337
- Kamali-Najafabad M, Imanpoor MR, Taghizadeh V, Alishahi A. Effect of dietary chitosan on growth performance, hematological parameters, intestinal histology and stress resistance of Caspian kutum (Rutilus frisii kutum Kamenskii, 1901) fingerlings. Fish Physiol Biochem. 2016; 42:1063-1071. https://doi.org/10.1007/s10695-016-0197-3
- El-Naby A, Naiel FS, Al-Sagheer MAE, Negm SS. Dietary chitosan nanoparticles enhance the growth, production performance, and immunity in Oreochromis niloticus. Aquaculture. 2019; 501:82–89. https://doi.org/10.1016/j.aquaculture.2018.11.014
- Abdel-Tawwab M, Razek A, Abdel-Rahman M. Immunostimulatory effect of dietary chitosan nanoparticles on the performance of Nile tilapia, Oreochromis niloticus (L.). Fish Shellfish Immunol. 2019; 88:254–258. https://doi.org/10.1016/j.fsi.2019.02.063
- Alaye-Rahy N, Morales-Palacios J.J. Parámetros hematológicos y células sanguíneas de organismos juveniles de pescado blanco (Chirostoma estor estor) cultivados en Pátzcuaro, Michoacán. México. Hidrobiológica. 2013; 23(3):340-347. https://hidrobiologica.izt.uam.mx/index.php/revHidro/article/view/653
- Hossam-Eldel N, Abu N, Ali S, Khattab M, Marzouk M. Dietary Immune Nutritive Effect of Chitosan/Chitosan Nanoparticles on the Nile Tilapia: Short-term Exposure. EJABF. 2024; 28(1):157–183. https://doi.org/10.21608/EJABF.2024.336935
- Martins L, Nomura T, Myiazaki M, Pilarsky F, Ribeiro K, de Castro P, de Campos F. Physiological and haematological response of Oreochromis niloticus (Osteichthyes: cichlidae) exposed to single and consecutive stress of capture. Acta Scientiarum Anim Sci. 2004; 26(4):449–456. https://doi.org/10.4025/actascianimsci.v26i4.1719
- Stanek M, Mazurkiewicz J, Rawski M, Bogucka J, Ziółkowska E, Dankowiakowska A, Kierończyk B. Effect on chitosan on common carp (Cyprinus carpio) fry growth performance, feed utilization and nutriphysiologycal status. Aquac Rep. 2023; 30:101622. https://doi.org/10.1016/j.aqrep.2023.101622
- Abdel-Ghany H, El-S, Salem M. Effects of dietary chitosan supplementation on farmed fish; a review. Rev Aquac. 2019; 1(5):1-15. https://doi.org/10.1111/raq.12326
- Zaki A, Shatby E, Shatby E. Effect of CS supplemented diet on survival, growth, feed utilization, body composition and histology of sea bass (Dicentrarchus labrax). World J Eng Technol. 2015; 3(4):38–47. https://doi.org/10.4236/wjet.2015.34c005
- Wang Y, Li J, Effects of chitosan nanoparticles on survival, growth and meat quality of tilapia, Oreochromis nilotica. Nanotoxicology. 2011; 5(3): 425–431. https://doi.org/10.3109/17435390.2010.530354
- Salam A, Rahman A, Paul I, Islam F, Barman K, Rahman Z, et al. Dietary chitosan promotes the growth, biochemical composition, gut microbiota, hematological parameters and internal organ morphology of juvenile Barbonymus gonionotus. PLoS ONE. 2021; 16(11):1-23. https://doi.org/10.1371/journal.pone.0260192
- Bhaskaram P. Immunology of iron-deficient subjects. In: R.K. Chandra (Ed.), Nutrition and Immunology. Alan R. Liss Inc., New York; 1988.
- Wood RJ, Serfaty-Lacrosniere C. Gastric acidity, atrophic gastritis and calcium absorption. Nutr Rev. 1992; 50:33–40. https://doi.org/10.1111/j.1753-4887.1992.tb02510.x
- Hossain MA, Yoshimatsu T. Dietary calcium requirement in fishes. Aquaculture nutrition. 2014; 20(1):1-11. https://doi.org/10.1111/anu.12135
- Martemyanov VI. Ranges of regulation of sodium, potassium, calcium, magnesium concentrations in plasma, erythrocytes, and muscle tissue of Rutilus rutilus under natural conditions. Journal of Evolutionary Biochemistry and Physiology. 2001; 37:141-147. https://doi.org/10.1023/A:1017680829971
- Xun P, Zhou C, Huan, X, Huang Z, Yu W, Yang Y. et al. Effects of dietary potassium diformate on growth performance, fillet quality, plasma indices, intestinal morphology and liver health of juvenile golden pompano (Trachinotus ovatus). Aquaculture Reports. 2022; 24:101110. https://doi.org/10.1016/j.aqrep.2022.101110
- Yang Y, Oh W, Nakajima D, Maeda A, Naka T, Kim CS, et al. Effects of habitual chitosan intake on bone mass, bone-related metabolic markers and duodenum CaBP D9K mRNA in ovariectomized SHRSP rats. J Nutr Sci Vitam. 2002; 48:371–378. https://doi.org/10.3177/jnsv.48.371
- Keiji Deuchi, Osamu Kanauchi, Mika Shizukuishi, Eiichi Kobayashi. Continuous and Massive Intake of Chitosan Affects Mineral and Fat-soluble Vitamin Status in Rats Fed on a High-fat Diet. Biosci Biotechnol Biochem. 1995; 59(7):1211-1216. https://doi.org/10.1271/bbb.59.1211
- Zaki M, Shatby E, Shatby E. Effect of CS supplemented diet on survival, growth, feed utilization, body composition and histology of sea bass (Dicentrarchus labrax). World J Eng Technol. 2015; 3(4):38–47. https://doi.org/10.4236/wjet.2015.34c005
- Martínez-Porchas M, Martínez R, Ramos R. Cortisol and glucose: reliable indicators of fish stress? Pan Am J Aquat Sci. 2009; 4(2):158–178. https://panamjas.org/pdf_artigos/panamjas_4(2)_158-178.pdf
- Crivelenti Leandro, Borín Sofia, M. Socha José Javier, Mundim Antonio V. Valores bioquímicos séricos de tilapia del nilo (oreochromis niloticus) en cultivo intensivo. Rev Investig Vet. Perú. 2011; 22(4):318-323. https://doi.org/10.15381/rivep.v22i4.331
- Alishahi A, Mirvaghefi A, Tehrani R, Farahmand H, Koshio S, Dorkoosh FA, et al. CS nanoparticle to carry vitamin C through the gastrointestinal tract and induce the non-specific immunity system of rainbow trout (Oncorhynchus mykiss). Carbohydr Polym. 2011; 86(1):142–146. https://doi.org/10.1016/j. carbpol.2011.04.028