Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Influencia del selenio y factores ambientales en el rendimiento reproductivo en porcinos Pietrain

Influence of selenium and environmental factors on reproductive performance in pietrain swine



Cómo citar
Piscoya Vargas, C. A., Díaz García, M. de L., Leiva Piedra, J. C., & Paredes Valderrama, J. R. (2025). Influencia del selenio y factores ambientales en el rendimiento reproductivo en porcinos Pietrain. Revista MVZ Córdoba, 30(1), e3558. https://doi.org/10.21897/rmvz.3558

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

César Augusto Piscoya Vargas
Magaly de Lourdes Díaz García
José Carlos Leiva Piedra
Juan Raphael Paredes Valderrama

César Augusto Piscoya Vargas,

Universidad Nacional Pedro Ruíz Gallo, Facultad de Medicina Veterinaria, departamento de Producción y Sanidad Porcina, Lambayeque, Perú.


Magaly de Lourdes Díaz García,

Universidad Nacional Pedro Ruíz Gallo, Facultad de Medicina Veterinaria, Departamento de Diagnóstico Clínico, Lambayeque, Perú.


José Carlos Leiva Piedra,

Universidad Nacional Pedro Ruíz Gallo, Facultad de Medicina Veterinaria, Departamento de Diagnóstico Clínico, Lambayeque, Perú.


Juan Raphael Paredes Valderrama,

Universidad Privada Antenor Orrego (UPAO), Facultad de Ciencias Agrarias, Programa de estudios de Medicina Veterinaria y Zootecnia, Trujillo, Perú.

Instituto de Educación Superior Tecnológico Público Mache, Programa de estudios de Producción Agropecuaria, Unidad de Investigación, La Libertad, Perú.


Objetivo. Determinar la influencia del selenio (Se), temperatura ambiental e Índice de Temperatura-Humedad (ITH) en el tamaño de camada en porcinos Pietrain. Materiales y Métodos.  La investigación se ejecutó en dos estaciones: verano y otoño. Se trabajó con 4 verracos y 20 marranas de raza Pietrain en un diseño factorial considerando los factores tratamiento (control y experimental) y sexo (macho y hembra). El tratamiento en machos se realizó con 10 mg de Se cada 30 días desde los 6 meses de edad hasta el final del estudio. En hembras, se administró 10 mg de Se 15 días antes de la inseminación y a los 30, 60 y 90 días de gestación. Se anotaron la temperatura y humedad de una estación meteorológica para calcular el ITH. El efecto del Se y los factores ambientales sobre el tamaño de camada fue evaluado con un análisis de varianza factorial con una significancia de p<0.05. Resultados. El mayor número de camadas (11,8 ± 1,1) se observó en la temporada de otoño, en hembras experimentales inseminadas con un macho experimental. Todo lo contrario, ocurrió en las hembras control inseminadas con machos tratados con selenio, con una media de 8,8 ± 0,5 lechones/parto en otoño. Conclusiones. La administración de selenio en machos y hembras, los bajos niveles de temperatura e ITH; favorecieron un aumento significativo en el rendimiento reproductivo de porcinos Pietrain.


Visitas del artículo 207 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Mayorga E, Ross J, Keating A, Rhoads R, Baumgard L. Biology of heat stress; the nexus between intestinal hyperpermeability and swine reproduction. Theriogenology. 2020; 154:73-83. https://doi.org/10.1016/j.theriogenology.2020.05.023
  2. Abuajamieh M, Kvidera S, Mayorga E, Kaiser A, Lei S, Seibert J, et al. The effect of recovery from heat stress on circulating bioenergetics and inflammatory biomarkers. J Anim Sci. 2018; 96 (11):4599-4610. https://doi.org/10.1093/jas/sky345
  3. Schulze M, Kuster C, Schäfer J, Jung M, Grossfeld R. Effect of production management on semen quality during long-term storage in different European boar studs. Anim Reprod Sci. 2018; 190:94-101. https://doi.org/10.1016/j.anireprosci.2018.01.011
  4. Gonzalez-Castro R, Porflidt C, Patton T, Goins D, Herickhoff L. Retrospective analysis of commercial heterospermic and homospermic cooled boar semen: Effect of the season, sample type and shipping temperature on sperm quality. Reprod Domest Anim. 2022; 57(4):357-367. https://doi.org/10.1111/rda.14074
  5. Wegner K, Lambertz C, Das G, Reiner G, Gauly M. Effects of temperature and temperature-humidity index on the reproductive performance of sows during summer months under a temperate climate. Anim Sci J. 2016; 87(11):1334-1339. https://doi.org/10.1111/asj.12569
  6. Limesand S, Camacho L, Kelly A, Antolic A. Impact of thermal stress on placental function and fetal physiology. Anim Reprod. 2018; 15(Suppl 1):886–898. http://dx.doi.org/10.21451/1984-3143-AR2018-0056
  7. Laporta J, Fabris T, Skibiel A, Powell J, Hayen M, Horvath K, et al. In utero exposure to heat stress during late gestation has prolonged effects on the activity patterns and growth of dairy calves. J Dairy Sci. 2017; 100(4):2976-2984. https://doi.org/10.3168/jds.2016-11993
  8. García y González E, Pineda-Burgos B, Ruiz-Ortega M, Cortez-Romero C, Paredes-Alvarado M, Ponce-Covarrubias J. El estrés calórico afecta a las hembras ovinas Blackbelly durante el verano en el trópico. Rev MVZ Córdoba. 2024; 29(1):e3186. https://doi.org/10.21897/rmvz.3186
  9. Le H, Vidacs E, Phillips D, Zhao W, Furness J, Gabler NK et al. PSIV-8 Effect of selenium and superoxide dismutase supplementation on heat stressed pigs. J Anim Sci. 2019; 97(Suppl 2):179. https://doi.org/10.1093/jas/skz122.315
  10. Tang J, Cao L, Jia G, Liu G, Chen X, Tian G, et al. The protective effect of selenium from heat stress-induced porcine small intestinal epithelial cell line (IPEC-J2) injury is associated with regulation expression of selenoproteins. Br J Nutr. 2019; 122(10):1081-90. https://doi.org/10.1017/S0007114519001910
  11. He Y, Liu Y, Tang J, Jia G, Liu G, Tian G, et al. Selenium exerts protective effects against heat stress-induced barrier disruption and inflammation response in jejunum of growing pigs. J Sci Food Agric. 2022; 102(2):496-504. https://doi.org/10.1002/jsfa.11377
  12. Chen J, Zhang F, Guan W, Song H, Tian M, Cheng L, et al. Increasing selenium supply for heat-stressed or actively cooled sows improves piglet preweaning survival, colostrum and milk composition, as well as maternal selenium, antioxidant status and immunoglobulin transfer. J Trace Elem Med Biol. 2019; 52:89-99. https://doi.org/10.1016/j.jtemb.2018.11.010
  13. Thom EC. The Discomfort Index. Weatherwise. 1959; 12(2):57–61. https://doi.org/10.1080/00431672.1959.9926960
  14. Martín-Hidalgo D, Macías-García B, García-Marín L, Bragado M, González-Fernández L. Boar spermatozoa proteomic profile varies in sperm collected during the summer and winter. Anim Reprod Sci. 2020; 219:106513. https://doi.org/10.1016/j.anireprosci.2020.106513
  15. Hensel B, Pieper L, Jung M, Schulze M. Influence of age, breed, and season on the quality of boar semen stored at low-temperature. Theriogenology. 2023; 208:102-108. https://doi.org/10.1016/j.theriogenology.2023.06.010
  16. Surai P, Fisinin V. Selenium in pig nutrition and reproduction: boars and semen quality-a review. Asian-Australas J Anim Sci. 2015; 28(5):730-746. https://doi.org/10.5713/ajas.14.0593
  17. Pavaneli A, Martinez C, Nakasone D, Pedrosa A, Mendonça M, Martins S, et al. Hydroxy-selenomethionine as an organic source of selenium in the diet improves boar reproductive performance in artificial insemination programs. J Anim Sci. 2021; 99(11):skab320. https://doi.org/10.1093/jas/skab320
  18. Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Malevu T, et al. A Summary of New Findings on the Biological Effects of Selenium in Selected Animal Species-A Critical Review. Int J Mol Sci. 2017; 18(10):2209. https://doi.org/10.3390/ijms18102209
  19. King R. Seasonal infertility in pigs: what have we achieved and where are we up to? Anim Prod Sci. 2017; 57(12):2325-2230. https://doi.org/10.1071/AN17260
  20. Flowers WL. Factors affecting the production of quality ejaculates from boars. Anim Reprod Sci. 2022; 246:106840. https://doi.org/10.1016/j.anireprosci.2021.106840
  21. Chen J, Han JH, Guan WT, Chen F, Wang CX, Zhang YZ, et al. Selenium and vitamin E in sow diets: I. Effect on antioxidant status and reproductive performance in multiparous sows. Anim Feed Sci Technol. 2016; 221:111-123. https://doi.org/10.1016/j.anifeedsci.2016.08.022
  22. Surai PF, Fisinin VI. Selenium in sow nutrition. Anim Feed Sci Technol. 2016; 211:18-30. https://doi.org/10.1016/j.anifeedsci.2015.11.006
  23. Andrade TS, Watanabe PH, de Mendonça IB, Vieira EH, de Alcântara Araújo GG, Vasconcelos DM, et al. Organic selenium and vitamin E for gilts and sows bred in equatorial climate. J Anim Physiol Anim Nutr. 2024; 108(1):234-42. https://doi.org/10.1111/jpn.13883
  24. Gan F, Chen X, Liao S, Lv C, Ren F, Ye G, et al. Selenium-enriched probiotics improve antioxidant status, immune function, and selenoprotein gene expression of piglets raised under high ambient temperature. J Agric Food Chem. 2014; 62(20):4502-4508. https://doi.org/10.1021/jf501065d
  25. Zhao Y, Kim SW. Oxidative stress status and reproductive performance of sows during gestation and lactation under different thermal environments. Asian-Australas J Anim Sci. 2020; 33(5):722. https://doi.org/10.5713/ajas.19.0334
  26. Zhou SY, Wu BX, Liu Z, Zhang TJ. Effects of different selenium sources on sow reproductive performance and piglet development: a meta-analysis. J Anim Feed Sci. 2021; 30(3):260-70. https://doi.org/10.22358/jafs/138774/2021
  27. Liu F, Braden C, Smits R, Craig J, Henman D, Brewster C, et al. Compensatory feeding during early gestation for sows with a high weight loss after a summer lactation increased piglet birth weight but reduced litter size. J Anim Sci. 2021; 99(9):skab228. https://doi.org/10.1093/jas/skab228
  28. Rooney H, O’driscoll K, O’doherty J, Lawlor P. Effect of increasing dietary energy density during late gestation and lactation on sow performance, piglet vitality, and lifetime growth of offspring. J Anim Sci. 2020; 98(1):skz379. https://doi.org/10.1093/jas/skz379
  29. De Rensis F, Ziecik AJ, Kirkwood RN. Seasonal infertility in gilts and sows: Aetiology, clinical implications and treatments. Theriogenology. 2017; 96:111-117. https://doi.org/10.1016/j.theriogenology.2017.04.004
  30. Lopes TP, Sanchez-Osorio J, Bolarin A, Martinez EA, Roca J. Relevance of ovarian follicular development to the seasonal impairment of fertility in weaned sows. Vet J. 2014; 199(3):382-386. https://doi.org/10.1016/j.tvjl.2013.11.026
  31. Auvigne V, Leneveu P, Jehannin C, Peltoniemi O, Sallé E. Seasonal infertility in sows: A five year field study to analyze the relative roles of heat stress and photoperiod. Theriogenology. 2010; 74(1):60-66. https://doi.org/10.1016/j.theriogenology.2009.12.019
  32. Knox RV. Swine fertility in a changing climate. Anim Reprod Sci. 2024; 107537. https://doi.org/10.1016/j.anireprosci.2024.107537
  33. Wegner K, Lambertz C, Daş G, Reiner G, Gauly M. Climatic effects on sow fertility and piglet survival under influence of a moderate climate. Animal. 2014; 8(9):1526-1533. https://doi.org/10.1017/S1751731114001219
  34. Ross JW, Hale BJ, Seibert JT, Romoser MR, Adur MK, Keating AF, et al. Physiological mechanisms through which heat stress compromises reproduction in pigs. Mol Reprod Dev. 2017; 84(9):934-945. https://doi.org/10.1002/mrd.22859
  35. Gourdine J, Rauw W, Gilbert H, Poullet N. The Genetics of Thermoregulation in Pigs: A Review. Front Vet Sci. 2021; 8:770480. https://doi.org/10.3389/fvets.2021.770480
  36. Li N, Sun Z, Ansari A, Cui L, Hu Y, Li Z, et al. Impact of Maternal Selenium Supplementation from Late Gestation and Lactation on Piglet Immune Function. Biol Trace Elem Res. 2020; 194(1):159-167. https://doi.org/10.1007/s12011-019-01754-y
  37. Mou D, Ding D, Yan H, Qin B, Dong Y, Li Z, et al. Maternal supplementation of organic selenium during gestation improves sows and offspring antioxidant capacity and inflammatory status and promotes embryo survival. Food Funct. 2021; 12(1):315-327. https://doi.org/10.1039/D0FO02274H
  38. Mou D, Ding D, Li S, Yan H, Qin B, Li Z, et al. Effect of maternal organic selenium supplementation during pregnancy on sow reproductive performance and long-term effect on their progeny. J Anim Sci. 2020; 98(12):skaa366. https://doi.org/10.1093/jas/skaa366
  39. Dumniem N, Boonprakob R, Parsons T, Tummaruk P. Pen Versus Crate: A Comparative Study on the Effects of Different Farrowing Systems on Farrowing Performance, Colostrum Yield and Piglet Preweaning Mortality in Sows under Tropical Conditions. Animals. 2023; 13(2):233. https://doi.org/10.3390/ani13020233
  40. Wang C, Guo L, Wei H, Zhou Y, Tan J, Sun H, et al. Logistic regression analysis of the related factors in discarded semen of boars in Southern China. Theriogenology. 2019; 131:47-51. https://doi.org/10.1016/j.theriogenology.2019.03.012
  41. Tremoen N, Gaustad A, Andersen-Ranberg I, Van Son M, Zeremichael T, Frydenlund K, et al. Relationship between sperm motility characteristics and ATP concentrations, and association with fertility in two different pig breeds. Anim Reprod Sci. 2018; 193:226-234. https://doi.org/10.1016/j.anireprosci.2018.04.075
  42. Suárez-Mesa R, Estany J, Rondón-Barragán I. Semen quality of Colombian Creole as compared to commercial pig breeds. Trop Anim Health Prod. 2021; 53(1):129. https://doi.org/10.1007/s11250-021-02557-x

Sistema OJS 3.4.0.3 - Metabiblioteca |