Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Extrusión húmeda y tratamiento químico del pasto maralfalfa (Pennisetum sp)

Wet extrusion and chemical treatment of maralfalfa grass (Pennisetum sp)



Cómo citar
Jaimes Cruz, L. J. J., Correa-Cardona, H. J. ., & Giraldo-Mejía, Ángel. (2022). Extrusión húmeda y tratamiento químico del pasto maralfalfa (Pennisetum sp). Revista MVZ Córdoba, 27(3), e2528. https://doi.org/10.21897/rmvz.2528

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Ligia Johana Johana Jaimes Cruz
Héctor Jairo Correa-Cardona
Ángel Giraldo-Mejía

Ligia Johana Johana Jaimes Cruz,

Universidad Nacional de Colombia, Facultad de Ciencias Agrarias, Medellín. Colombia.


Héctor Jairo Correa-Cardona,

Universidad Nacional de Colombia, Facultad de Ciencias Agrarias, Medellín. Colombia.


Ángel Giraldo-Mejía,

Universidad Nacional de Colombia, Facultad de Ciencias Agrarias, Medellín. Colombia.


Objetivos.  Evaluar el papel de la extrusión húmeda y la aplicación de dos compuestos alcalinos sobre la digestibilidad in vitro de materia seca (DIVMS) y fibra en detergente neutro (DIVFDN). Métodos. Se picaron 48 muestras de 51 días de rebrote y se asignaron a ocho tratamientos: pasto fresco, picado y deshidratado (CTRL); pasto crudo, picado y extruido (EXTR); EXTR tratado con 0.45, 0.90 y 1.35% de cal (Ca(OH)2) o urea durante 21 días en microsilos bajo condiciones aeróbicas (EXTR0.45Ca, EXTR0.90Ca, EXTR1.35Ca, EXTR0.45U, EXTR0.90U y EXTR1.35U, respectivamente). El contenido de materia seca (MS), nitrógeno (N), Calcio (Ca), Fibra Detergente Neutra (FDN), Lignina Detergente Ácida (LDA) y la DIVMS y DIVFDN fueron determinadas en cada muestra. Resultados. El EXTR presentó menor contenido de N, mayor contenido de FDN y mayor DIVFDN que CTRL. Por otro lado, el tratamiento con EXTR1.35Ca presentó la mayor concentración de Ca y la mayor DIVMS y DIVFDN, mientras que el tratamiento con EXTR0.90U presentó la mayor concentración de N y una DIVFDN estadísticamente similar a la de EXTR1.35Ca. Conclusiones. La extrusión húmeda solo de pasto maralfalfa aumenta el IVDNDF, sin embargo, la DIVMS y DIVFDN se maximizan cuando se tratan con 1.35% de Ca(OH)2.


Visitas del artículo 194 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Correa HJ. Calidad nutricional del pasto maralfalfa (Pennisetum sp) cosechado a dos edades de rebrote. Liv Res Rural Dev. 2006; 18: Article84 http://www.lrrd.org/lrrd18/6/corr18084.htm
  2. Chavez M, Domine M. Lignina, estructura y aplicaciones: métodos de despolimerización para la obtención de derivados aromáticos de interés industrial. Av Cien Ing. 2013; 4(4):15-46 https://dialnet.unirioja.es/servlet/articulo?codigo=4710101
  3. Chandra RP, Bura R, Mabee W, Berlin A, Pan X, Saddler JN. Substrate pretreatment: the key of effective enzymatic hydrolysis of lignocellulosics? Adv Bioechem Eng Biotechnol. 2007; 108:67–93. https://doi.org/10.1007/10_2007_064
  4. Lee M. A global comparison of the nutritive values of forage plants grown in contrasting environments. J Plant Res. 2018; 131: 641–654. https://doi.org/10.1007/s10265-018-1024-y
  5. Raffrenato E, Fievisohn R, Cotanch KW, Grant RJ, Chase LE, Van Amburgh ME. Effect of lignin linkages with other plant cell wall components on in vitro and in vivo neutral detergent fiber digestibility and rate of digestion of grass forages. J Dairy Sci. 2017; 100: 8119–8131 https://doi.org/10.3168/jds.2016-12364
  6. de Visser H, Klop A, Van der Koelen CJ, Van Vuuren AM. Starch Supplementation of Grass Harvested at Two Stages of Maturity Prior to Ensiling: Intake, Digestion, and Degradability by Dairy Cows. J Dairy Sci. 1998; 81(8):2221-2227 https://doi.org/10.3168/jds.S0022-0302(98)75801-1
  7. Ferraretto LF, Shave, RD. Effects of whole-plant corn silage hybrid type on intake, digestion, ruminal fermentation, and lactation performance by dairy cows through a meta-analysis. J Dairy Sci. 2015; 98(4): 2662-75 https://doi.org/10.3168/jds.2014-9045
  8. Quang dV, Ba NX, Doyle PT, Hai DV, Lane PA, Malau-Aduli AE, Van NH, Parsons D. Effect of concentrate supplementation on nutrient digestibility and growth of Brahman crossbred cattle fed a basal diet of grass and rice straw. J Anim Sci Tech. 2015; 57: 35 https://doi.org/10.1186/s40781-015-0068-y
  9. Nocek JE. Bovine Acidosis: Implications on Laminitis. J Dairy Sci. 1997; 80: 1005–1028 https://doi.org/10.3168/jds.S0022-0302(97)76026-0
  10. }10. Shabani E, Ceroni V. Subacute ruminal acidosis (SARA) in different groups of age and lactation in cows for milk production. Anglist J (IJLLIS). 2013; 2(4):230–234 https://www.anglisticum.org.mk/index.php/IJLLIS/article/view/1290/1789
  11. di Paola A, Rulli MC, Santini M. Human food vs. animal feed debate. A thorough analysis of environmental footprints. Land Use Pol. 2017; 67: 652-659 https://doi.org/10.1016/j.landusepol.2017.06.017
  12. Consejo Nacional de Política Económica y Social. Política Nacional Para Mejorar La Competitividad Del Sector Lácteo Colombiano. Departamento Nacional de Planeación: Colombia; 2010 https://www.minagricultura.gov.co/ministerio/direcciones/Documents/d.angie/conpes%203675.pdf
  13. Duque A, Manzanares P, Ballesteros M. Extrusion as a pretreatment for lignocellulosic biomass: Fundamentals and applications. Ren Energy. 2017; 114(Part B):1427-1441 https://doi.org/10.1016/j.renene.2017.06.050
  14. Jaimes LJ, Mendoza EO, Menjivar CA, Montoya EV, Giraldo Á, Correa HJ. Extrusión húmeda del pasto Kikuyo (Cenchrus clandestinus). Rev MVZ Córdoba. 2021; 26(1):e1964 https://doi.org/10.21897/rmvz.1964
  15. Jaimes LJ, Menjivar CA, Montoya EV, Mendoza EO, Correa HJ, Girañdo Á, Ruíz ÁA. Hidrólisis enzimática del pasto maralfalfa (Pennisetum sp) sometido a extrusión húmeda. Rev ion. 2021; 34(1): 111-120 https://doi.org/10.18273/revion.v34n1-2021009
  16. }16. Vandenbossche V, Doumeng C, Rigal L. Thermomechanical and thermo-mechano-chemical pretreatment of wheat straw using a twin-screw extruder. Biores. 2014; 9(1):1519-1538 https://doi.org/10.15376/biores.9.1.1519-1538
  17. Zaman M, Owen E. The effect of calcium hydroxide and urea treatment of barley straw on chemical composition and digestibility in vitro. Anim Feed Sci Tech. 1995; 51:165-171 https://doi.org/10.1016/0377-8401(94)00669-Z
  18. Sirohi SK, Rai SN. Synergistic Effect of Urea and Lime Treatment of Wheat Straw on Chemical Composition In Sacco and In Vitro Digestibility. Asian-Austral J Anim Sci. 1999; 12:1049–53 https://doi.org/10.5713/ajas.1999.1049
  19. Wanapat M, Sundstol F, Garmo TH. A comparison of alkali treatment methods to improve the nutritive value of straw. I. Digestibility and metabolizability. Anim Feed Sci Tech. 1985; 12:295–309 https://doi.org/10.1016/0377-8401(85)90006-9
  20. Djajanegara A, Molina BT, Doyle PT. The utilization of untreated and calcium hydroxide treated wheat straw by sheep. Anim Feed Sci Tech. 1985; 12:141-150 https://doi.org/10.1016/0377-8401(85)90060-4
  21. Association of Official Analytical Chemist – AOAC. Methods of Analysis. 20 ed. Washington D.C. AOAC Int. 2016.
  22. Van Soest P, Robertson JB, Lewis BA. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J Dairy Sci. 1991; 74:3583–3597 https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  23. Barchiesi C, Alomar D, Miranda H. Pepsin-Cellulase Digestibility of Pasture Silages: Effects of Pasture Type, Maturity Stage, and Variations in the Enzymatic Method. Chilean J Agric Res. 2011; 71(2):249-257 https://doi.org/10.4067/S0718-5839201100020001
  24. Statistical Analysis Software (SAS). Statistics (Version 8). CaryNC: the Institute. 1998.
  25. Mendoza-Grimón V, Fernández-Vera JR, Hernández-Moreno JM, Palacios-Díaz MP. Mineral balance and absorption from soil of Pennisetum sp at different stages. Int J Environ Agric Res. 2016; 2(10):29–35. https://accedacris.ulpgc.es/bitstream/10553/70505/2/Mineral_balance_absorption.pdf
  26. Clavero T, Razz R. Valor nutritivo del pasto maralfalfa (Pennisetum purpureum x Pennisetum glaucum) en condiciones de defoliación. Rev Fac Agron Univ Zulia. 2009; 26(1): 78 - 87 http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0378-78182009000100005
  27. Zhan X, Wang D, Bean SR, Mo X, Sun XS, Boyle D. Ethanol production from supercritical-fluid-extrusion cooked sorghum. Ind Crops Prod. 2006; 23(3):304–310 https://doi.org/10.1016/j.indcrop.2005.09.001
  28. Kim TH, Kim JS, Sunwoo C, Lee YY. Pretreatment of corn stover by aqueous ammonia. Biores Tech. 2003; 90:39–47 https://doi.org/10.1016/S0960-8524(03)00097-X
  29. Kim S, Holtzapple MT. Lime pretreatment and enzymatic hydrolysis of corn stover. Biores Tech. 2005; 96:1994-2006 https://doi.org/10.1016/j.biortech.2005.01.014
  30. Chang VS, Holtzapple M. Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol. 2000; 84:5-37 https://doi.org/10.1385/ABAB:84-86:1-9:5
  31. Ventura M, Barrios A, Morales I, Toro C, Barreto K, Noguera F. Efecto de la "amonificación seca" sobre el valor nutricional de la soca de sorgo (Sorghum bicolor). Rev Cien. 2002; 12(Supl 2):513-516 https://produccioncientificaluz.org/index.php/cientifica/article/view/14915/14892
  32. Jiménez R, San Martín F, Huamán H, Ara M, Arbaiza T, Huamán A. Efectos del tamaño de partícula y tipo de amonificación-conservación sobre la digestibilidad y consumo del rastrojo de maíz en ovinos. Rev Inv Vet Perú. 2010; 21(1):19-25 http://www.scielo.org.pe/pdf/rivep/v21n1/a03v21n1.pdf
  33. Trach NX, Mo M, Dan CX. Effects of treatment of rice straw with lime and/or urea on its chemical composition, in-vitro gas production and in-sacco degradation characteristics. Liv Res Rural Dev. 2001; 13: Article35 http://www.lrrd.org/lrrd13/4/trac134a.htm
  34. Behera S, Arora R, Nandhagopal N, Kumar S. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sust Energ Rev. 2014; 36:91–106 https://doi.org/10.1016/j.rser.2014.04.047
  35. Kincaid RL, Hillers JK, Cronrath JD. Calcium and Phosphorus Supplementation of Rations for Lactating Cows. J Dairy Sci. 1981; 64(5):754-758 https://doi.org/10.3168/jds.S0022-0302(81)82644-6
  36. National Research Council (NRC). The nutrient requirement of dairy cattle. Seventh ed.; National Academy Press, Washington D.C., 2001.
  37. Beitz DC, Burkhart DJ, Jacobson NL. Effects of Calcium to Phosphorus Ratio in the Diet of Dairy Cows on Incidence of Parturient Paresis. J Dairy Sci. 1974; 57(1):49-55 https://doi.org/10.3168/jds.S0022-0302(74)84830-7
  38. Elgemark E. Intensively processed silage using Bio-extruder. Animal Science Degree, Swedish University of Agricultural Sciences, Department of Animal Nutrition and Management: Uppsala; 2019 https://stud.epsilon.slu.se/14511/7/Elgemark_E_190405.pdf
  39. Heredia E, Pérez E, Montoya M, Serna SO. Effects of Extrusion Pretreatment Parameters on Sweet Sorghum Bagasse Enzymatic Hydrolysis and Its Subsequent Conversion into Bioethanol. BioMed Res Int. 2015; 2015:325905 https://doi.org/10.1155/2015/325905
  40. Sirohi SK, Rai SN. Synergistic effect of lime and urea treatment of wheat straw on chemical composition, in-sacco and in-vitro digestibility. Asian-Aust J Ani Sci. 1999; 12:1049-1053 https://doi.org/10.5713/ajas.1999.1049
  41. Zaman MS, Owen F. The effect of calcium hydroxide and urea treatment of barley straw on chemical composition and digestibility in-vitro. Anim Feed Sci Tech. 1995; 51:165-171 https://doi.org/10.1016/0377-8401(94)00669-Z.
  42. Ramirez GR, Aguilera JC, Garcia G, Nunez AM. Effect of Urea Treatment on Chemical Composition and Digestion of Cenchrus ciliaris and Cynodon dactylon Hays and Zea mays Residues. Anim Vet Adv. 2007; 6(8):1036-1041 http://docsdrive.com/pdfs/medwelljournals/javaa/2007/1036-1041.pdf
  43. Lázaro C, Aranda E.M, Ramos JA, Vargas LM, Hernandez O. Efecto del hidróxido de calcio y conservación en el valor nutritivo de alimentos a base de residuos de caña de azúcar. Agro Produc. 2018; 7:2 https://www.revista-agroproductividad.org/index.php/agroproductividad/article/view/517/397
  44. Oba M, Allen MS. Evaluation of the importance of the digestibility of neutral detergent fibre from forage: effects on dry matter intake and milk yield of dairy cows. J Dairy Sci. 1999; 82:589–596 https://doi.org/10.3168/jds.S0022-0302(99)75271-9
  45. Bargo F, Muller LD, Kolver ES, Delahoy JE. 2003. Invited Review: Production and digestion of supplemented dairy cows on pasture. J Dairy Sci. 2003; 86:1-42 https://doi.org/10.3168/jds.S0022-0302(03)73581-4

Sistema OJS 3.4.0.3 - Metabiblioteca |