Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Perspectiva veterinaria del sistema renal en la sepsis

Veterinary perspective of the renal system in sepsis



Cómo citar
Beatriz, Ricardo Andres, Marjury Cristina, Ana Paula, Luiz Fernando, Letícia, & Marcus Antonio. (2021). Perspectiva veterinaria del sistema renal en la sepsis. Revista MVZ Córdoba, 26(2), e2007. https://doi.org/10.21897/rmvz.2007

Dimensions
PlumX








,

Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Patobiologia e Teriogenologia Veterinária, Jaboticabal, São Paulo, Brasil.


,

Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Instituto de Ciências Agrárias, Unaí, Minas Gerais, Brasil.


,

Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Patobiologia e Teriogenologia Veterinária, Jaboticabal, São Paulo, Brasil.


,

Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Patobiologia e Teriogenologia Veterinária, Jaboticabal, São Paulo, Brasil.


,

Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Faculdade de Ciências Agrárias e Veterinárias, Departamento de Patobiologia e Teriogenologia Veterinária, Jaboticabal, São Paulo, Brasil.


,

Universidade Federal de Santa Maria, Departamento de Clínica de Grandes Animais, Santa Maria, Rio Grande do Sul, Brasil.


Esta revisión tiene como objetivo discutir y definir los factores asociados con el desarrollo de lesión renal en pacientes con sepsis, alternativas de diagnóstico, terapia y prevención, ofreciendo a los veterinarios una guía actualizada para mejorar el pronóstico de los pacientes con sepsis. La sepsis es una condición clínica que conduce a complicaciones sistémicas y al síndrome de disfunción multiorgánica (MODS), principalmente debido a una pobre perfusión tisular en humanos y animales. La lesión renal aguda (LRA) se considera la más frecuente y letal entre las complicaciones orgánicas secundarias a la sepsis, sin embargo, la etiología de la LRA en pacientes con sepsis es compleja, multifactorial y no está completamente elucidada. El diagnóstico temprano de LRA es difícil y, en consecuencia, el tratamiento no es muy exitoso debido a los aspectos hemodinámicos. La ecografía parece ser un examen prometedor para el diagnóstico precoz de esta lesión, especialmente con el advenimiento de la técnica de ecografía contrastada (CEUS), que permite detectar cambios en la microcirculación de el parénquima renal, abriendo la puerta a una variedad de componentes fisiopatológicos, aplicaciones clínicas y terapéuticas, sin embargo, los estudios que demuestran la precisión de CEUS para la detección temprana de daño renal relacionado con sepsis en humanos y animales aún son limitados.


Visitas del artículo 898 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). J Am Med Assoc. 2016; 315(8):801–810. https://doi.org/10.1001/jama.2016.0287
  2. Otto CM. Sepsis in veterinary patients: What do we know and where can we go? J Vet Emerg Crit Care. 2007; 17(4):329–332. https://doi.org/10.1111/j.1476-4431.2007.00253.x
  3. Kenney EM, Rozanski EA, Rush JE, DeLaforcade-Buress AM, Berg JR, Silverstein DC et al. Association between outcome and organ system dysfunction in dogs with sepsis: 114 cases (2003-2007). J Am Vet Med Assoc. 2010; 236(1):83–87. https://doi.org/10.2460/javma.236.1.83
  4. Langenberg C, Bellomo R, May C, Wan L, Egi M, Morgera S. Renal blood flow in sepsis. Crit Care. 2005; 9(4):R363–R374. https://doi.org/10.1186/cc3540
  5. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S et al. Acute renal failure in critically ill patients a multinational, multicenter study. Am Med Assoc. 2005; 294(7):813–818. https://doi.org/10.1001/jama.294.7.813
  6. Schneider A, Goodwin M, Bellomo R. Measurement of kidney perfusion in critically ill patients. Crit Care. 2013; 17(220):220. https://doi.org/10.1186/cc12529
  7. Suh SH, Kim CS, Choi JS, Bae EH, Ma SK, Kim SW. Acute Kidney Injury in Patients with Sepsis and Septic Shock: Risk Factors and Clinical Outcomes. Yonsei Med J. 2013; 54(4):965–972. https://doi.org/10.3349/ymj.2013.54.4.965
  8. Troìa R, Mascalzoni G, Calipa S, Magagnoli I, Dondi F, Giunti M. Multiorgan dysfunction syndrome in feline sepsis: prevalence and prognostic implication. J Feline Med Surg. 2019; 21(6):559–565. https://doi.org/10.1177/1098612X18792106
  9. Keir I, Kellum JA. Acute kidney injury in severe sepsis: Pathophysiology, diagnosis, and treatment recommendations. J Vet Emerg Crit Care. 2015; 25(2):200–209. https://doi.org/10.1111/vec.12297
  10. O’Connor PM, Evans RG. Structural antioxidant defense mechanisms in the mammalian and nonmammalian kidney: different solutions to the same problem? Am J Physiol Regul Integr Comp Physiol. 2010; 299(3):R723–R727. https://doi.org/10.1152/ajpregu.00364.2010
  11. Waller KR, O’Brien RT, Zagzebski JA. Quantitative contrast ultrasound analysis of renal perfusion in normal dogs. Vet Radiol Ultrasound. 2007; 48(4):373–377. https://doi.org/10.1111/j.1740-8261.2007.00259.x
  12. Wei K, Le E, Bin J, Coggins M, Thorpe J, Kaul S. Quantification of renal blood flow with Contrast-Enhanced Ultrasound. J Am Coll Cardiol. 2001; 37(4):1135–1140. https://doi.org/10.1016/s0735-1097(00)01210-9
  13. Zarjou A, Agarwal A. Sepsis and Acute Kidney Injury. J Am Soc Nephrol. 2011; 22:999–1006. https://doi.org/10.1681/ASN.2010050484
  14. Maddens B, Daminet S, Smets P, Meyer E. Escherichia coli pyometra induces transient glomerular and tubular dysfunction in dogs. J Vet Intern Med. 2010; 24(6):1263–1270. https://doi.org/10.1111/j.1939-1676.2010.0603.x
  15. LeGrand M, Bezemer R, Kandil A, Demirci C, Payen D, Ince C. The role of renal hypoperfusion in development of renal microcirculatory dysfunction in endotoxemic rats. Intensive Care Med. 2011; 37:1534–1542. https://doi.org/10.1007/s00134-011-2267-4
  16. Johannes T, Mik EG, Ince C. Nonresuscitated endotoxemia induces microcirculatory hypoxic areas in the renal cortex in the rat. Shock. 2009; 31(1):97–103. https://doi.org/10.1097/SHK.0b013e31817c02a5
  17. Zafrani L, Payen D, Azoulay E, Ince C. The Microcirculation of the Septic Kidney. Semin Nephrol. 2015; 35:75–84. https://doi.org/10.1016/j.semnephrol.2015.01.008.
  18. Singel DJ, Stamler JS. Chemical physiology of blood flow regulation by red blood cells: The role of nitric oxide and S-Ntrosohemoglobin. Annu Rev Physiol. 2005; 67:99–145. https://doi.org/10.1146/annurev.physiol.67.060603.090918
  19. Adembri C, Sgambati E, Vitali L, Selmi V, Margheri M, Tani A et al. Sepsis induces albuminuria and alterations in the glomerular filtration barrier: a morphofunctional study in the rat. Crit Care. 2011; 15:R277. https://doi.org/10.1186/cc10559
  20. Doi K, Yuen PST, Eisner C, Hu X, Leelahavanichkul A, Star RA. Reduced production of creatinine limits its use as marker of kidney injury in sepsis. J Am Soc Nephrol. 2009; 20:1217–1221. https://doi.org/10.1681/ASN.2008060617
  21. Zappitelli M. Epidemiology and diagnosis of acute kidney injury. Semin Nephrol 2008; 28(5):436–446. https://doi.org/10.1016/j.semnephrol.2008.05.003
  22. Lisowska-myjak B. Serum and Urinary Biomarkers of Acute Kidney Injury. Blood Purif. 2010; 29:357–365. https://doi.org/10.1159/000309421
  23. Ostermann M, Joannidis M. Acute kidney injury 2016: diagnosis and diagnostic workup. Crit Care. 2016; 20:1–13. https://doi.org/10.1186/s13054-016-1478-z
  24. Kovarikova S. Urinary biomarkers of renal function in dogs and cats: a review. Praha:Vet Med. 2015; 60(11):589–602. https://doi.org/10.17221/8527-VETMED
  25. Koyner JL. Assessment and Diagnosis of Renal Dysfunction in the ICU. Chest. 2012; 141(6):1584–1594. https://doi.org/10.1378/chest.11-1513
  26. Lee YJ, Hu YY, Lin YS, Chang CT, Lin FY, Wong ML et al. Urine neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute canine kidney injury. BMC Vet Res. 2012; 8(248):1–9. https://doi.org/10.1186/1746-6148-8-248
  27. Winkler MS, Nierhaus A, Rösler G, Lezius S, Harlandt O, Schwedhelm E et al. Symmetrical (SDMA) and asymmetrical dimethylarginine (ADMA) in sepsis: High plasma levels as combined risk markers for sepsis survival. Crit Care. 2018; 22(1):1–10. https://doi.org/10.1186/s13054-018-2090-1
  28. Dahlem DP, Neiger R, Schweighauser A, Francey T, Yerramilli M, Obare E et al. Plasma Symmetric Dimethylarginine Concentration in Dogs with Acute Kidney Injury and Chronic Kidney Disease. J Vet Intern Med. 2017; 31(3):799–804. https://doi.org/10.1111/jvim.14694
  29. Köster LS, Peda A, Fraites T, Sithole F. A preliminary investigation into the prognostic relevance of symmetric dimethylarginine in critically ill dogs. J Vet Emerg Crit Care. 2018; 28(6):527–531. https://doi.org/10.1111/vec.12780
  30. Godin M, Murray P, Mehta RL. Clinical approach to the patient with AKI and sepsis. Semin Nephrol. 2015; 35:12–22. https://doi.org/10.1016/j.semnephrol.2015.01.003
  31. Langenberg C, Bagshaw SM, May CN, Bellomo R. The histopathology of septic acute kidney injury: a systematic review. Crit Care. 2008; 12(2):1–7. https://doi.org/10.1186/cc6823
  32. Wan L, Bagshaw SM, Langenberg C, Saotome T, May C, Bellomo R. Pathophysiology of septic acute kidney injury: What do we really know? Crit Care Med. 2008; 36(4):S198–S203. https://doi.org/10.1097/CCM.0b013e318168ccd5
  33. Morrell ED, Kellum JA, Pastor-soler NM, Hallows KR. Septic acute kidney injury: molecular mechanisms and the importance of stratification and targeting therapy. Crit Care. 2014; 18:501. https://doi.org/10.1186/s13054-014-0501-5
  34. Hinshaw LB, Taylor FB Jr, Chang AC, Pryor RW, Lee PA, Straughn F et al. Staphylococcus aureus-induced shock: a pathophysiologic study. Circ Shock. 1988; 26(3):257-265. https://europepmc.org/article/med/3061682#abstract
  35. Takasu O, Gaut JP, Watanabe E, To K, Fagley RE, Sato B et al. Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am J Respir Crit Care Med. 2013; 187(23):509–513. https://doi.org/10.1164/rccm.201211-1983OC
  36. Chvojka J, Sykora R, Krouzecky A, Radej J, Varnerova V, Karvunidis T et al. Renal haemodynamic, microcirculatory, metabolic and histopathological responses to peritonitis-induced septic shock in pigs. Crit Care. 2008; 12:R164. https://doi.org/10.1186/cc7164
  37. Ravikant T, Lucas CE. Renal blood flow distribution in septic hyperdynamic. J Surg Res. 1977; 22:294–298. https://doi.org/10.1016/0022-4804(77)90146-9
  38. Lima A, Rooij TV, Ergin B, Sorelli M, Ince Y, Specht PAC et al. Dynamic Contrast-Enhanced Ultrasound identifies microcirculatory alterations in sepsis-induced acute kidney injury. Crit Care Med. 2018; 20(8):1–9. https://doi.org/10.1097/CCM.0000000000003209
  39. Santos RV, Merlini NB, Souza LP, Machado VMV, Pantoja JCF, Prestes NC. Doppler ultrasonography in the renal evaluation of bitches diagnosed with pyometra before and after treatment with ovariohysterectomy. Pesqui Vet Bras. 2013; 33(5):635–642. https://doi.org/10.1590/S0100-736X2013000500014
  40. Lerolle N, Guérot E, Faisy C, Bornstain C, Diehl JL, Fagon JY. Renal failure in septic shock: predictive value of Doppler-based renal arterial resistive index. Intensive Care Med. 2006; 32:1553–1559. https://doi.org/10.1007/s00134-006-0360-x
  41. Granata A, Zanoli L, Clementi S, Fatuzzo P, Di Nocolò P, Fiorini F. Resistive intrarenal index: myth or reality? Br J Radiol. 2014; 87:1–7. https://doi.org/10.1259/bjr.20140004
  42. Donia MA, Gomaa NA, Abdelmegeid M, Nassif MN. Biomarkers versus duplex ultrasonography for early detection of acute kidney injury in dogs: an experimental study. Slov Vet Res. 2019; 56:179–186. https://doi.org/10.26873/SVR-755-2019
  43. Gullichsen E, Nelimarkka O, Halkola L, Ninikoski J. Renal oxygenation in endotoxin shock in dogs. Crit Care Med. 1989; 17:547-50. https://doi.org/10.1097/00003246-198906000-00013
  44. Kalantarinia K, Okusa M. Ultrasound Contrast Agents in the Study of Kidney Function in Health and Disease. Drug Discov Today Dis Mech. 2007; 4(3):153-158. https://doi.org/10.1016/j.ddmec.2007.10.006
  45. Seiler GS, Brown JC, Reetz JA, Taeymans O, Bucknoff M, Rossi F et al. Safety of contrast-enhanced ultrasonography in dogs and cats: 488 cases (2002-2011). J Am Vet Med Assoc. 2013; 242(9), 1255–1259. https://doi.org/10.2460/javma.242.9.1255
  46. Fischer K, Meral FC, Zhang Y, Vangel MG, Jolesz FA, Ichimura T et al. High-resolution renal perfusion mapping using contrast-enhanced ultrasonography in ischemia-reperfusion injury monitors changes in renal microperfusion. Kidney Int. 2016; 89:1388–1398. https://doi.org/10.1016/j.kint.2016.02.004
  47. Girlich C, Jung EM, Iesalnieks I, Schreyer AG, Zorger N, Strauch U et al. Quantitative assessment of bowel wall vascularisation in Crohn’s disease with contrast-enhanced ultrasound and perfusion analysis. Clin Hemorheol and Microcirculation. 2009; 43:141–148. https://doi.org/10.3233/CH-2009-1228
  48. Zeisbrich M, Kihm LP, Druschler F, Zeier M, Schwenger V. When is contrast-enhanced sonography preferable over conventional ultrasound combined with Doppler imaging in renal transplantation? Clin Kidney J. 2015; 8:1-9. https://doi.org/10.1093/ckj/sfv070
  49. Haers H, Saunders JH. Reference Point ultrasonography in dogs. J Am Vet Med Assoc. 2009; 234:460–470. https://doi.org/10.2460/javma.234.4.460
  50. Miyoshi T, Okayama H, Hiasa G, Kawata Y. Contrast-enhanced ultrasound for the evaluation of acute renal infarction. J Med Ultrason. 2015; 43(1):141–143. https://doi.org/10.1007/s10396-015-0655-z
  51. Schneider AG, Hofmann L, Wuerzner G, Glatz N, Maillard M, Meuwly JY et al. Renal perfusion evaluation with contrast-enhanced ultrasonography. Nephrol Dial Transplant. 2012; 27(2):674–681. https://doi.org/10.1093/ndt/gfr345
  52. Dong Y, Wang W, Cao J, Fan P, Lin X. Quantitative Evaluation of Contrast-Enhanced Ultrasonography in the Diagnosis of Chronic Ischemic Renal Disease in a Dog Model. PLoS One. 2013; 8:1–7. https://doi.org/10.1371/journal.pone.0070337
  53. Brenner M, Schaer GL, Mallory DL, Suffredini AF, Parillo JE. Detection of renal blood flow abnormalities in septic and critically ill patients using a newly designed indwelling thermodilution renal vein catheter. Chest. 1990; 98:170–179. https://doi.org/10.1378/chest.98.1.170
  54. Mannucci T, Lippi I, Rota A, Citi S. Contrast enhancement ultrasound of renal perfusion in dogs with acute kidney injury. J Small Anim Pract. 2019; 60(8):1–6. https://doi.org/10.1111/jsap.13001
  55. Gasser B, Uscategui RAR, Maronezi MC, Pavan L, Simões APR, Martinato F et al. Clinical and ultrasound variables for early diagnosis of septic acute kidney injury in bitches with pyometra. Sci Rep. 2020; 10(1):1–12. https://doi.org/10.1038/s41598-020-65902-4
  56. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med. 2017; 43(3):304–377. https://doi.org/10.1007/s00134-017-4683-6
  57. Poston JT, Koyner JL. Sepsis associated acute kidney injury. BMJ. 2019; 364:k4891. https://doi.org/10.1136/bmj.k4891
  58. Honore PM, Jacobs R, Hendrickx I, Bagshaw SM, Boyau OJ, Boer W et al. Prevention and treatment of sepsis ‑ induced acute kidney injury: an update. Ann Intensive Care. 2015; 5:51. https://doi.org/10.1186/s13613-015-0095-3
  59. Giantomasso D Di, Morimatsu H, May CN, Bellomo R. Intrarenal blood flow distribution in hyperdynamic septic shock: Effect of norepinephrine. Crit Care Med. 2003; 31:2509–2513. https://doi.org/10.1097/01.CCM.0000084842.66153.5A
  60. McClellan JM, Goldstein RE, Erb HN, Dykes NL, Cowgill LD. Effects of administration of fluids and diuretics on glomerular filtration rate, renal blood flow, and urine output in healthy awake cats. Am J Vet Res. 2006; 67(4):715–22. https://doi.org/10.2460/ajvr.67.4.715

Sistema OJS 3.4.0.3 - Metabiblioteca |