Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Estimación de la diversidad genética de Anadara tuberculosa en cinco manglares de Tumaco, utilizando la enzima citocromo oxidasa I

Estimation of Anadara tuberculosa genetic diversity in five mangroves from Tumaco, using Cytochrome oxidase I enzyme



Abrir | Descargar

Cómo citar
Chamorro L, E., & Rosero G, C. (2016). Estimación de la diversidad genética de Anadara tuberculosa en cinco manglares de Tumaco, utilizando la enzima citocromo oxidasa I. Revista MVZ Córdoba, 21(3), 5547-5557. https://doi.org/10.21897/rmvz.829

Dimensions
PlumX
Esmeralda Chamorro L
Carol Rosero G

RESUMEN

Objetivo. Estimar la diversidad genética de Anadara tuberculosa en cinco manglares de Tumaco Nariño, Colombia utilizando como marcador molecular mitocondrial la subunidad I de la citocromo oxidasa (COI). Materiales y métodos. Se colectaron en total 50 individuos de los manglares San Jorge, La Tiburonera, El Pajal, La Playa y Bajito Vaquería, tomando 10 ejemplares al azar de cada  extrajo y amplificó el ADN mitocondrial mediante la técnica de PCR (Polymerase Chain Reaction). Los productos de PCR amplificados y cuantificados se secuenciaron por ambos lados (Macrogen). Una vez se obtuvo las secuencias, se editó y alineo cada secuencia. Posteriormente, se midió los parámetros de diversidad genética (haplotípica y nucleotídica) y se elaboró el análisis de distribución entre pares de frecuencias (Mistmach distribution). Finalmente se efectuó el análisis de variación nucleotídica y la estructura poblacional (AMOVA). Resultados. El gen amplificado tuvo una longitud de 710 pb. La diversidad haplotípica reportada para todas las poblaciones fue alta (0.683±0.060) y la diversidad nucleotídica reportada fue baja para todas las poblaciones (0.040±0.020). Los resultados del AMOVA indican que la varianza entre poblaciones es baja (4.20%) y la varianza dentro de las poblaciones es alta (95.80%). Conclusiones. Las poblaciones estudiadas no se encuentran estructuradas y a pesar de la disminución de los bancos naturales de las poblaciones de Anadara tuberculosa, se estima que la diversidad genética es alta.


Visitas del artículo 1587 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Lucero C, Cantera J, Neira R. The fisheries and growth of Ark Clams (Arcoida: Arcidae) Anadara tuberculosa in Malaga Bay, Colombian Pacific, 2005-2007. Rev Biol Trop 2012; 60(1):203-17.
  2. https://doi.org/10.15517/rbt.v60i1.2754
  3. Lucero-Rincon CH, Cantera JR, Gil- Agudelo DL, Munoz O, Zapata LA, Cortes N, et al. Spatio-temporal analysis of the reproductive biology and recruitment of the bivalve mollusks Anadara tuberculosa in the Colombian Pacific coast. Rev Biol Mar Oceanog 2013; 48(2):321-34. https://doi.org/10.4067/S0718-19572013000200011
  4. Espinosa S, Hernández MFD, Riofrío BO, Mejía-Ladino LM, Gil-Agudelo DL. Estado de la población y valoración de algunas estrategias de conservación del recurso piangua Anadara tuberculosa (sowerby) en sectores de bazán y nerete, costa pacífica nari-ense de Colombia. Bol Invest Mar Cost 2010; 39(1):161-76.
  5. Flores L, Licandeo R, Cubillos LA, Mora E. Intra-specific variability in life-history traits of Anadara tuberculosa (Mollusca: Bivalvia) in the mangrove ecosystem of the Southern coast of Ecuador. Rev Biol Trop 2014; 62(2):473-82. https://doi.org/10.15517/rbt.v62i2.8501
  6. López-Rocha J, Félix-Pico E, Hernández- Rivas M. Productividad secundaria en los esteros de la barra de arena El Mogote en la Ensenada de La Paz, Baja California Sur, México. Hidrobiológica 2012; 22(1):79-88.
  7. Ardila N. NGR, Reyes J. Libro rojo de invertebrados marinos de Colombia. Bogotá, Colombia.: INVEMAR. Ministerio de Medio Ambiente; 2002.
  8. Borem A, Fritsche-Neto R. Biotechnology and Plant Breeding. San Diego: Academic Press; 2014.
  9. Godoy JA. La genética, los marcadores moleculares y la conservación de especies. Ecosistemas 2009;18(1):23-33.
  10. Ghatani S, Shylla JA, Roy B, Tandon V. Multilocus sequence evaluation for differentiating species of the trematode Family Gastrothylacidae, with a note on the utility of mitochondrial COI motifs in species identification. Gene. 2014; 548(2):277-84.
  11. https://doi.org/10.1016/j.gene.2014.07.046
  12. Eimanifar A, Van Stappen G, Wink M. Geographical distribution and evolutionary divergence times of Asian populations of the brine shrimp Artemia (Crustacea, Anostraca). Zool J Linn Soc-Lond 2015; 174(3):447-58. P https://doi.org/10.1111/zoj.12242
  13. Marigo J, Cunha HA, Bertozzi CP, Souza SP, Rosas FCW, Cremer MJ, et al. Genetic diversity and population structure of Synthesium pontoporiae (Digenea, Brachycladiidae) linked to its definitive host stocks, the endangered Franciscana dolphin, Pontoporia blainvillei (Pontoporiidae) off the coast of Brazil and Argentina. J Helminthol 2015; 89(1):19-27. https://doi.org/10.1017/S0022149X13000540
  14. Vaschetto LM, Gonzalez-Ittig RE, Vergara J, Acosta LE. High genetic diversity in the harvestman Geraeocormobius sylvarum (Arachnida, Opiliones, Gonyleptidae) from subtropical forests in north-eastern Argentina revealed by mitochondrial DNA sequences. J Zool Syst Evol Res 2015; 53(3):211-8. https://doi.org/10.1111/jzs.12093
  15. Fu YX. Statistical Tests of Neutrality of Mutations Against Population Growth, Hitchhiking and Background Selection. Genetics Society of America 1997; 147:925.
  16. Ragionieri L, Cannicci S, Schubart CD, Fratini S. Gene flow and demographic history of the mangrove crab Neosarmatium meinerti: A case study from the western Indian Ocean. Estuar Coast Shelf S 2010; 86(2):179-88. https://doi.org/10.1016/j.ecss.2009.11.002
  17. Shen YB, Li Jl, Feng BB. Genetic Analysis of Cultured and Wild Populations of Mytilus coruscus Based on Mitochondrial DNA. Zoological Research 2009; 30(3):246. https://doi.org/10.3724/SP.J.1141.2009.03240
  18. González RR, Himelreichs JF, Cruzat FA, Asencio GC, Oyarzún P, Hernández-Miranda E. Frequent haplotypes of caged Caligus rogercresseyi in the austral south of Chile: The result of a long term serial passage experiment? Aquaculture 2016; 450:143-153.
  19. https://doi.org/10.1016/j.aquaculture.2015.07.024
  20. Gómez-Chiarri M, Guo X, Tanguy A, Hee Y, Proestou D. The use of -omic tools in the study of disease processes in marine bivalve mollusks. J Invertebr Pathol. 2015; 131:137-154. http://dx.doi.org/10.1016/j.jip.2015.05.007 https://doi.org/10.1016/j.jip.2015.05.007
  21. Benavides AMS, Carrion RB. Abundance and morphometry of Anadara-tuberculosa and Anadara-similis (Mollusca : bivalvia) in the Purruja Mangrove Swamp, Golfo Dulce, Costa Rica. Rev Biol Trop 2001; 49:315-20.
  22. An HS, Park KJ, Cho KC, Han HS, Myeong J-I. Genetic structure of Korean populations of the clam Ruditapes philippinarum inferred from microsatellite marker analysis. Biochem Syst Ecol 2012; 44(0):186-95. https://doi.org/10.1016/j.bse.2012.05.007
  23. Stern-Pirlot A, Wolff M. Population dynamics and fisheries potential of Anadara tuberculosa (Bivalvia : Arcidae) along the Pacific coast of Costa Rica. Rev Biol Trop 2006; 54:87-100.
  24. Zhaxybayeva O, Gogarten P. Cladogenesis, coalescence and the evolution of the three domains of life. Trends Genet 2004; 20(4):187. https://doi.org/10.1016/j.tig.2004.02.004

Sistema OJS 3.4.0.3 - Metabiblioteca |