Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Evaluación de las características fisicoquímicas y digestibilidad de un extrudido con frijol común para cerdos

Evaluation of physicochemical characteristics and digestibility of an extrudate with common bean for pigs



Cómo citar
Araiza-Rosales, E. E. ., Gurrola-Reyes, N. ., Carrete-Carreón, F. O. ., Sánchez-Arroyo, J. F. ., Haubi-Segura, C. U., Alaniz-Villanueva, Óscar G., & Reyes-Jáquez, D. (2021). Evaluación de las características fisicoquímicas y digestibilidad de un extrudido con frijol común para cerdos. Revista MVZ Córdoba, 27(1), e2172. https://doi.org/10.21897/rmvz.2172

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Elia E Araiza-Rosales
Natividad Gurrola-Reyes
Francisco O Carrete-Carreón
Juan F Sánchez-Arroyo
Carlos Urban Haubi-Segura
Óscar Gilberto Alaniz-Villanueva
Damián Reyes-Jáquez

Elia E Araiza-Rosales,

Universidad Juárez del estado de Durango, Consejo Nacional de Ciencia y Tecnología, Facultad de Medicina Veterinaria y Zootecnia, Durango, México


Natividad Gurrola-Reyes,

Instituto Politécnico Nacional (CIIDIR-IPN), Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Durango, México.


Francisco O Carrete-Carreón,

Universidad Juárez del estado de Durango, Facultad de Medicina Veterinaria y Zootecnia, México


Juan F Sánchez-Arroyo,

Universidad Juárez del estado de Durango, Facultad de Medicina Veterinaria y Zootecnia, México


Carlos Urban Haubi-Segura,

Universidad Autónoma de Aguascalientes, Departamento de Disciplinas Pecuarias, Centro de Ciencias Agropecuarias, México.


Óscar Gilberto Alaniz-Villanueva,

Instituto Tecnológico del Valle del Guadiana-Tecnológico Nacional de México. Durango, México.


Damián Reyes-Jáquez,

Instituto Tecnológico de Durango-Tecnológico Nacional de México. Durango, México.


Objetivo. Evaluar las propiedades fisicoquímicas, digestibilidad In vitro y digestibilidad aparente de nitrógeno en materia fecal y orina de cerdos de un alimento extrudido usando frijol (Phaseolus vulgaris L.) como sustituto de harina de soya. Materiales y métodos. Se estandarizó el proceso de extrusión para dos formulaciones de harina de frijol (Pinto Saltillo), harina de maíz (Cafime) y harina de soya a diferentes proporciones: 20/67/13% y 30/60/10%, respectivamente. Las muestras se procesaron en un extrusor monotornillo a 120-150°C y 18-22% de contenido de humedad. Las propiedades fisicoquímicas evaluadas fueron: índice de expansión, densidad aparente, índice de absorción de agua, índice de solubilidad en agua, dureza, actividad de agua y parámetros de color: L*, a* y b*. La digestibilidad In vitro y digestibilidad aparente de nitrógeno en materia fecal y orina de cerdos se evaluaron usando el tratamiento óptimo previamente obtenido buscando disminuir costos de procesamiento. Resultados. Las condiciones óptimas para la formulación de 20% de harina de frijol fueron 124.4°C y 18.59% de contenido de humedad. La temperatura de extrusión redujo la densidad aparente, dureza y actividad de agua, pero incrementó L* y el índice de expansión. El contenido de humedad redujo la densidad aparente, actividad de agua, dureza y a*. La digestibilidad In vitro de materia seca fue mayor para la dieta de frijol extrudido en comparación a la dieta control (92.33% vs. 85.33%). Conclusiones. Los resultados indican que la harina de frijol es una opción viable para el consumo animal en términos de valor nutricional y digestibilidad.


Visitas del artículo 760 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Garcia-Gudiño J, Monteiro ANTR, Espagnol S, Blanco-Penedo I, Garcia-Launay F. Life cycle assessment of Iberian traditional pig production system in Spain. Sustainability. 2020; 12:627. https://doi.org/10.3390/su12020627
  2. Ball MEE, Magowan E, McCracken KJ, Beattie VE, Bradford R, Thompson A, Gordon FJ. An investigation into the effect of dietary particle size and pelleting of diets for finishing pigs. Livest Sci. 2015; 173:48–54. https://doi.org/10.1016/j.livsci.2014.11.015
  3. Jong-Bang E, Fy-Hung H, Ok-Ja Ch. Physicochemical properties of rice-based expanded snacks according to extrusion conditions. J Korean Soc Food Sci Nutr. 2014; 43(9):1407-1414. https://doi.org/10.3746/jkfn.2014.43.9.1407
  4. Celmeli TS, Hatice C, Huseyin S, Duygu A, Alper E, Tuba TC. The nutritional content of common bean (Phaseolus vulgaris L.) Landraces in comparison to modern varieties. Agron. 2018; 8:166. https://doi.org/10.3390/agronomy8090166
  5. SIAP. Servicio de Información Agroalimentaria y Pesquera. Acciones y Programas. Cierre de la producción agrícola. 2021. https://nube.siap.gob.mx/cierreagricola/
  6. Olmolola OM, Faramade OO, Fagbemi TN. Effect of extrusion on protein quality, antinutritional factors, and digestibility of complementary diet from quality protein maize and soybean protein concentrate. J Food Biochem. 2018; 42(4):e12508. https://doi.org/10.1111/jfbc.12508
  7. Caicedo W, Sanchez J, Tapuy A, Vargas JC, Samaniego S, Valle S, Moyano J, Pujupat D. Apparent digestibility of nutrients in fattening pigs (Largewhite x Duroc x Pietrain), fed with taro (Colocasia esculenta (L.) Schott) meal. Technical note. Cuban J Agr Sci. 2018; 52(2):181-186. http://cjascience.com/index.php/CJAS/article/view/795
  8. National Research Council. Nutrient Requirements of Swine: Eleventh Revised Edition. Washington, DC: The National Academies Press; 2012. https://doi.org/10.17226/13298
  9. Höglund E. Eliasson L, Oliveira G, Almli VL, Sozer N. Effect of drying and extrusion processing on physical and nutritional characteristics of bilberry press cake extrudates. J Food Sci Technol. 2018; 92:422-428. https://doi.org/10.1016/j.lwt.2018.02.042
  10. Oke MO, Awonorin SO, Sanni LO, Asiedu R, Aiyedun PO. Effect of extrusion variables on extrudates properties of water yam flour - a response surface analysis. J Food Process Preserv. 2012; 37:456-473. https://doi.org/10.1111/j.1745-4549.2011.00661.x
  11. Qing–Bo D, Ainsworth P, Tucker G, Marson H. The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-based expanded snacks. J Food Eng. 2005; 66:284-289. https://doi.org/10.1016/j.jfoodeng.2004.03.019
  12. Delgado E, Valles-Rosales DJ, Flores NC, Reyes-Jáquez D, Evaluation of fish oil content and cottonseed meal with ultralow gossypol content on the functional properties of an extruded shrimp feed. Aquaculture Reports. 2021; 19:100588. https://doi.org/10.1016/j.aqrep.2021.100588
  13. Pathare P, Opara U, Al-Said F. Colour measurement and analysis in fresh and processed foods: A Review. Food Bioproc Tech. 2013; 6:36-60. https://doi.org/10.1007/s11947-012-0867-9
  14. AOAC. Association of Official Analytical Chemists. Official Methods of Analysis. 21st ed. Gaithersburg, Maryland; 2019.
  15. Mireles S, Moreno E, Samkol P, Caro Y, Ly J. Cut age and N balance in pigs fed with Moringa oleifera foliage meal. Cuban J Agr Sci. 2017; 51(2):191-196. https://www.cjascience.com/index.php/CJAS/article/view/731
  16. Ly J, Reyes L, Delgado E, Ayala L, Castro M. 2013. Royal palm nut meal for fattening pigs. Influence of body weight on rectal digestibility and faecal output of materials. Cuban J Agr Sci. 2013; 7(3):283-287. https://www.semanticscholar.org/paper/Royal-palm-nut-meal-for-fattening-pigs.-Influence-Ly-Reyes/cef699c533a645e9152fbc5ba867f7b646ed5f9d
  17. Caicedo W, Rodríguez R, Lezcano P, Ly J, Vargas JC, Uvidia H, Samaniego E, et al. Rectal digestibility of nutrients in growing pigs, fed with taro silage (Colocasia esculenta (L) Schott). Technical note. Cuban J Agr Sci. 2017; 51:337-341. http://dx.doi.org/10.15381/rivep.v30i2.16078
  18. O’Quinn PR, Knabe DA, Gregg EJ. Efficacy of Natuphos in sorghum-based diets of finishing swine. J Anim Sci. 1997; 75(5):1299. https://doi.org/10.2527/1997.7551299x
  19. Święch E. Alternative prediction methods of protein and energy evaluation of pig feeds. J Animal Sci Biotech. 2017; 8:39. https://doi.org/10.1186/s40104-017-0171-7
  20. Do Carmo SC, Varela P, Poudroux C, Dessev T, Myhrer K, Rieder A, Zobel H, Sahlstrøm S, Knutsen SH. The impact of extrusion parameters on physicochemical, nutritional and sensorial properties of expanded snacks from pea and oat fractions. J Food Sci Technol. 2019; 112:3620–3629. https://doi.org/10.2527/jas.2008-1739
  21. Alcázar-Alay SC, Almeida-Meireles MA. Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci Technol. 2015; 35(2):215-236. http://dx.doi.org/10.1590/1678-457X.6749
  22. Sobuñola OP, Babajide JM, Ogunsade O. Effect of brewers spent grain addition and extrusion parameters on some properties of extruded yam starch-based pasta. J Food Process Preserv. 2013; 37(5):734-743. https://doi.org/10.1111/j.1745-4549.2012.00711.x
  23. Martynenko A. True, particle, and bulk density of shrinkable biomaterials: Evaluation from drying experiments. Dry Technol. 2014; 32:1319-1325. https://doi.org/10.1080/07373937.2014.894522
  24. Kumar N, Sarkar BC, Sharma HK. Development and characterization of extruded product of carrot pomace, rice flour and pulse powder. Adv J Food Sci. 2010; 4:703-717. https://doi.org/10.2202/1556-3758.1824
  25. Filli KB, Nkama I, Jideani VA. The effect of extrusion conditions on the physical and functional properties of millet – Bambara groundnut based fura. Am J Food Sci Technol. 2013; 1(4):87-101. https://doi.org/10.1108/bfj-may-2010-0091
  26. Berna BB, Jae-Yoon H, Tugrul M, Erkan Y, Sueda C, Gi-Hyung R, Hamit K. Effects of cold extrusion process on thiamine and riboflavin contents of fortified corn extrudates. Food Chem. 2012. 132: 2165-2170. https://doi.org/10.1016/j.foodchem.2011.12.013
  27. Ratankumar-Singh RK, Majumdar RK, Venkateshwrlu G. Optimum extrusion-cooking conditions for improving physical properties of fish-cereal based snacks by response surface methodology. J Food Sci Technol. 2012; 51(9):1827-1836. https://dx.doi.org/10.1007%2Fs13197-012-0725-9
  28. Oikonomou NA, Krokida MK. Water absorption index and water solubility index prediction for extruded food products. Int J Food Prop. 2012; 15(1):157-168. https://doi.org/10.1080/10942911003754718
  29. Agyekum AK, Nyachoti CM. Nutritional and metabolic consequences of feeding high-fiber diets to swine: A review. Engr. 2017; 3:716-725. https://dx.doi.org/10.1016/J.ENG.2017.03.010
  30. Zhou X, Beltranena E, Zijlstra RT. Effects of feeding canola press-cake on diet nutrient digestibility and growth performance of weaned pigs. Anim Feed Sci Technol. 2016; 44(6):783-792. https://doi.org/10.1016/j.anifeedsci.2015.12.001
  31. Vukmirović D, Čolovića R, Rakitaa S, Brleka T, Đuragića O, Solà-Oriolb D. Importance of feed structure (particle size) and feed form (mash vs. pellets) in pig nutrition. Anim Feed Sci Technol. 2017; 233:133-144. https://doi.org/10.1016/j.anifeedsci.2017.06.016
  32. Nahid T, Niaz M. Food processing and Maillard reaction products: Effect on human health and nutrition. Int J Food Sci. 2015; 526762. https://dx.doi.org/10.1155%2F2015%2F526762
  33. FAO. Water use in livestock production systems and supply chains – Guidelines for assessment (Version 1). Livestock Environmental Assessment and Performance (LEAP) Partnership. Rome; 2019. https://doi.org/10.4060/ca5685en

Sistema OJS 3.4.0.3 - Metabiblioteca |