Evaluation of the physicochemical and functional properties of Colombian bee pollen

Contenido principal del artículo


Carlos Fuenmayor B Carlos Zuluaga D Consuelo Díaz M Marta Quicazán de C María Cosio Saverio Mannino



Objective. To establish current knowledge about Colombian bee-pollen from a point of view nutritional and functional, contributing towards creating national technical standards and the identification of chemical differentiation factors for further researches. Material and methods. One hundred ninety-six samples of dried bee pollen were collected in the center region of Colombia known as Cundi-boyacense high plateau, where nearly 90% of total bee pollen production is concentrated in this country. Performed physicochemical analyses in this study were: moisture, pH, acidity, ash, carbohydrates, lipids, proteins, dietary fiber, fatty acid profile and mineral elements. Results. Bee pollen from this region had 7.7±5.2 g/100 g moisture content, and a following centesimal composition based on dry matter: ashes 2.5±0.4 g; lipids 6.90±3.5 g; proteins 23.8±3.2 g and total dietary fiber 14.5±3.5 g. The most abundant fatty acids were α-linolenic, palmitic and linoleic. Carbohydrates were the main components and fructose and glucose the most concentrated sugars. The predominant minerals assessed here were potassium, calcium and magnesium. The results were also discussed in terms of the characteristics found in Colombian bee-pollen in comparison to international regulations and findings for other varieties of commercial bee-pollen from eight different countries. Conclusions. The results found in this study suggest that bee-pollen may be used as a dietary supplement and agree with bibliographical reports and international regulations. Such characterization will enable to be proposed technical standards in line with Colombian bee-pollen properties and it is expected to improve marketing and production chain conditions.

Palabras clave:

Detalles del artículo


1. Almeida-Muradian L, Pamplona L, Coimbra S, Barth O. Chemical composition and botanical evaluation of dried bee pollen pellets. J Food Compos Anal 2005; 18(1):105-111. http://dx.doi.org/10.1016/j.jfca.2003.10.008

2. Del Risco C, Pérez A, álvarez V, Rodríguez G, Leiva V, Puig Y, et al. Bacterias ácido-lácticas para ensilar polen apícola. Revista CENIC. Ciencias Biológicas 2012; 43(1):17-21.

3. Human H, Nicolson S. Nutritional content of fresh, bee-collected and stored pollen of Aloe geatheadii va. davyana (Asphodelaceae). Phytochemistry 2006; 67:1486-1492. http://dx.doi.org/10.1016/j.phytochem.2006.05.023

4. Gonzalez-Martin I, Hernandez-Hierro J, Barros-Ferreiro N, Cordon C, Garcia-Villanova R. Use of NIRS technology with a remote reflectance fibre-optic probe for predicting major components in bee pollen. Talanta 2007; 72:998-1003. http://dx.doi.org/10.1016/j.talanta.2006.12.039

5. Qian WL, Khan Z, Watson DG, Fearnley J. Analysis of sugars in bee pollen and propolis by ligand exchange chromatography in combination with pulsed amperometric detection and mass spectrometry. J Food Compos Anal 2008; 21(1):78-83. http://dx.doi.org/10.1016/j.jfca.2007.07.001

6. Xu X, Dong J, Mu X, Sun L. Supercritical CO2 extraction of oil, carotenoids, squalene and sterols from lotus (Nelumbo nucífera Gaertn) bee pollen. Food Bioprod Process 2011; 89(1):47-52. http://dx.doi.org/10.1016/j.fbp.2010.03.003

7. Xu L, Sun I, Dong L, Zhang H. Breaking the cells of rape bee pollen and consecutive extraction of functional oil with supercritical carbon dioxide. Innovat Food Sci Emerg Tech 2009; 10:42-46. http://dx.doi.org/10.1016/j.ifset.2008.08.004

8. Pinto B, Caciagli F, Riccio E, Reali D, Šaric A, Balog T, et al. Antiestrogenic and antigenotoxic activity of bee pollen from Cystus incanus and Salix alba as evaluated by the yeast estrogen screen and the micronucleus assay in human lymphocytes. Eur J Med Chem 2010; 45(9):4122-4128. http://dx.doi.org/10.1016/j.ejmech.2010.06.001

9. Mãrghitas LA, Stanciu OG, Dezmirean DS, Bobis O, Popescu O, Bogdanov S, et al. In vitro antioxidant capacity of honeybee-collected pollen of selected floral origin harvested from Romania. Food Chem 2009; 115(3):878-883. http://dx.doi.org/10.1016/j.foodchem.2009.01.014

10. Diaz C, Zuluaga C, Fuenmayor C, Martinez T. Special features of pollen production in Colombia. 41st World Congress of Apiculture. Montpellier, France; Apimondia: 2009.

11. Campos M, Bogdanov S, Almeida-Muradian L, Szczesna T, Mancebo Y, Frigerio C, et al. Pollen composition and standardisation of analytical methods. J Apicult Res 2008; 47(2):156-163. http://dx.doi.org/10.3896/IBRA.

12. Bogdanov S. The Bee Pollen Book. Bulgaria: Bee Product Science; 2011.

13. Somerville D, Nicol H. Mineral content of honeybee-collected pollen from sothern New South Wales. Aust J Exp Agr 2002; 42(8):1131–1136. http://dx.doi.org/10.1071/EA01086

14. Baldi B. Composición bromatológica del polen argentino. Ciencia, docencia y tecnología. Argentina: Universidad Nacional de Entre Ríos; 2004.

15. Rebiai A, Lanez T. Chemical composition and antioxidant activity of Apis mellifera bee pollen from northwest Algeria. J Fund Appl Sci 2012; 4(2):26–35.

16. Yang K, Wu D, Ye X, Liu D, Chen J, Sun P. Characterization of Chemical Composition of Bee Pollen in China. J Agr Food Chem 2013; 61:708–718. http://dx.doi.org/10.1021/jf304056b

17. Martínez T. Diagnóstico de la actividad apícola y de la crianza de abejas en Colombia. Colombia: Ministerio de Agricultura y Desarrollo Rural - Dirección de Cadenas Productivas. Instituto Intermaericano de Cooperación para la Agricultura; 2006.

18. IGAC-ORSTOM. Estudio regional integrado del Altiplano Cundiboyacense: estudio general de suelos. Bogotá, Colombia; 1984.

19. AOAC. Official Methods of Analysis of AOAC International. Association Official Analytical Chemists; 2005.

20. Díaz C, Zuluaga C, Morales C, Quicazán M. Determinación de fibra dietaría en polen apícola colombiano. Vitae 2012; 19(S1):454–456.

21. Nates-Parra G, Montoya P, Obregón D, Ramírez N, Solarte V, Chamorro F. La melisopalinología como herramienta para la diferenciación por origen botánico de productos de abejas en Colombia. Sincelejo, Colombia: Encuentro Nacional de Apicultura; 2010.

22. Čeksteryte V, Račys J, Kaškonieně V, Venskutonis P. Fatty acid composition in beebread. Biologija 2008; 54(4):253–257. http://dx.doi.org/10.2478/v10054-008-0052-2

23. Fuenmayor C, Quicazán M, Torres A, Rubio A. A beebread-inspired functional dietary supplement by means of solid state fermentation of honeybee-collected pollen with probiotic. Montpellier, France: Apimondia; 2009.

24. Szczesna T. Protein content and amino acid composition of bee-collected pollen from selected botanical origins. J Apic Sci 2006; 50(2):81–90.

25. Estevinho LM, Rodrigues S, Pereira AP, Feás X. Portuguese bee pollen: palynological study, nutritional and microbiological evaluation. Int J Food Sci Technol 2012; 47(2):429-435. http://dx.doi.org/10.1111/j.1365-2621.2011.02859.x

26. Almaraz-Abarca N, Campos M, ávila-Reyes J, Naranjo-Jiménez N, Herrera-Corral J, González-Valdez L. Variability of antioxidant activity among honeybee-collected pollen of different botanical origin. Interciencia 2004; 29(10):1–12.


La descarga de datos todavía no está disponible.