El sistema proteolítico calpaina en la tenderización de la carne: Un enfoque molecular.
Calpain System in meat tenderization: A molecular approach
Mostrar biografía de los autores
a terneza de la carne es considerada como el atributo de mayor importancia en el concepto de calidad de carne. El proceso de tenderización de la carne post mortem es principalmente el resultado de la degradación de proteínas clave de las fibras musculares, mediado por las proteasas del sistema calpaína. Este sistema proteico está compuesto por tres moléculas: dos proteasas calcio-dependientes y su inhibidor específico. Numerosos estudios han demostrado que el sistema calpaína desempeña un papel central en la proteólisis postmortem y en la tenderización de la carne. El objetivo de esta revisión es describir los últimos descubrimientos bioquímicos y moleculares en relación con este sistema proteolítico y su relación con la terneza de la carne bovina. Se describen los hallazgos de polimorfismos de ADN y de expresión de ARNm y proteínas, como herramientas para predecir la terneza de la carne. La comprensión de las bases moleculares de la tenderización de la carne puede ser de utilidad para la industria cárnica, permitiendo la modificación de las prácticas de manipulación antes del sacrificio y los tratamientos post mortem, mejorando la calidad de la carne bovina.
Visitas del artículo 3295 | Visitas PDF
Descargas
- Henchion MM, McCarthy M, Resconi VC. Beef quality attributes: A systematic review of consumer perspectives. Meat Sci 2017; 128:1–7. https://doi.org/10.1016/j.meatsci.2017.01.006
- Destefanis G, Brugiapaglia A, Barge MT, Dal Molin E. Relationship between beef consumer tenderness perception and Warner–Bratzler shear force. Meat Sci 2008; 78(3):153–6. https://doi.org/10.1016/j.meatsci.2007.05.031
- Herrera-Mendez CH, Becila S, Boudjellal A, Ouali A. Meat ageing: Reconsideration of the current concept. Trends Food Sci Technol 2006; 17(8):394–405. https://doi.org/10.1016/j.tifs.2006.01.011
- Koohmaraie M, Geesink GH. Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Sci 2006; 74(1):34–43. https://doi.org/10.1016/j.meatsci.2006.04.025
- Goll DE, Thompson VF, Li H, Wei W, Cong J. The Calpain System. Physiol Rev 2003; 83(3):731–801. https://doi.org/10.1152/physrev.00029.2002
- Campbell RL, Davies PL. Structure–function relationships in calpains. Biochem J 2012; 447:335–51. https://doi.org/10.1042/BJ20120921
- Ono Y, Sorimachi H. Calpains - An elaborate proteolytic system. Biochim Biophys Acta - Proteins Proteomics 2012; 1824(1):224–36. https://doi.org/10.1016/j.bbapap.2011.08.005
- Sorimachi H, Hata S, Ono Y. Impact of genetic insights into calpain biology. J Biochem 2011; 150(1):23–37. https://doi.org/10.1093/jb/mvr070
- Varricchio E, Russolillo MG, Maruccio L, Velotto S, Campanile G, Paolucci M, et al. Immunological detection of m- and µ-calpains in the skeletal muscle of Marchigiana cattle. Eur J Histochem 2013; 57:10–5. https://doi.org/10.4081/ejh.2013.e2
- Raynaud F, Fernandez E, Coulis G, Aubry L, Vignon X, Bleimling N, et al. Calpain 1 – titin interactions concentrate calpain 1 in the Z-band edges and in the N2-line region within the skeletal myofibril. FEBS J 2005; 272:2578–90. https://doi.org/10.1111/j.1742-4658.2005.04683.x
- Shaikh S, Samanta K, Kar P, Roy S, Chakraborti T, Chakraborti S. m-Calpain-mediated cleavage of Na+/Ca2+ exchanger-1 in caveolae vesicles isolated from pulmonary artery smooth muscle. Mol Cell Biochem 2010; 341:167–80. https://doi.org/10.1007/s11010-010-0448-z
- Samanta K, Kar P, Chakraborti T, Chakraborti S. An Overview of Endoplasmic Reticulum Calpain System. In: Chakraborti S, Dhalla N, editors. Proteases in Health and Disease Advances in Biochemistry in Health and Disease. New York, NY: Springer; 2013. https://doi.org/10.1007/978-1-4614-9233-7_1
- Samanta K, Kar P, Chakraborti T, Shaikh S, Chakraborti S. Characteristic properties of endoplasmic reticulum membrane m-calpain, calpastatin and lumen m-calpain: A comparative study between membrane and lumen m-calpains. J Biochem 2010; 147(5):765–79. https://doi.org/10.1093/jb/mvq009
- Kar P, Samanta K, Shaikh S, Chowdhury A, Chakraborti T, Chakraborti S. Mitochondrial calpain system: An overview. Arch Biochem Biophys 2010; 495(1):1–7. https://doi.org/10.1016/j.abb.2009.12.020
- Hood JL, Logan BB, Sinai AP, Brooks WH, Roszman TL. Association of the calpain/calpastatin network with subcellular organelles. Biochem Biophys Res Commun 2003; 310(4):1200–12. https://doi.org/10.1016/j.bbrc.2003.09.142
- Honda S, Marumoto T, Hirota T, Nitta M, Arima Y, Ogawa M, et al. Activation of m-calpain is required for chromosome alignment on the metaphase plate during mitosis. J Biol Chem 2004; 279(11):10615–23. https://doi.org/10.1074/jbc.M308841200
- Raynaud P, Jayat-Vignoles C, Laforêt MP, Levéziel H, Amarger V. Four promoters direct expression of the calpastatin gene. Arch Biochem Biophys 2005; 437(1):69–77. https://doi.org/10.1016/j.abb.2005.02.026
- Raynaud P, Gillard M, Parr T, Bardsley R, Amarger V, Levéziel H. Correlation between bovine calpastatin mRNA transcripts and protein isoforms. Arch Biochem Biophys 2005; 440:46–53. https://doi.org/10.1016/j.abb.2005.05.028
- Djadid ND, Nikmard M, Zakeri S, Gholizadeh S. Characterization of calpastatin gene in Iranian Afshari sheep. Iran J Biotechnol 2011; 9(2):145–9.
- Hanna RA, Garcia-Diaz BE, Davies PL. Calpastatin simultaneously binds four calpains with different kinetic constants. FEBS Lett 2007; 581(16):2894–28. https://doi.org/10.1016/j.febslet.2007.05.035
- Kemp CM, Sensky PL, Bardsley RG, Buttery PJ, Parr T. Tenderness - An enzymatic view. Meat Sci 2010; 84(2):248–56. https://doi.org/10.1016/j.meatsci.2009.06.008
- Smith TPL, Casas E, Rexroad CE, Kappes SM, Keele JW, Smith TPL, et al. Bovine CAPN1 maps to a region of BTA29 containing a quantitative trait locus for meat tenderness. J Anim Sci 2000; 78:2589–94. https://doi.org/10.2527/2000.78102589x
- Casas E, Shackelford SD, Keele JW, Stone RT, Kappes SM, Koohmaraie M. Quantitative trait loci affecting growth and carcass composition of cattle segregating alternate forms of myostatin. J Anim Sci 2000; 78:560–9. https://doi.org/10.2527/2000.783560x
- Morris CA, Daly CC, Cullen NG, Hickey SM. Correlations among beef carcass composition and meat quality traits from a genetic marker trial. Proc New Zeal Soc Anim Prod 2001; 61:96–9.
- Page BT, Casas E, Heaton MP, Cullen NG, Hyndman DL, Morris CA, et al. Evaluation of single-nucleotide polymorphisms in CAPN1 for association with meat tenderness in cattle. J Anim Sci 2002; 80:3077–85. https://doi.org/10.2527/2002.80123077x
- Page BT, Casas E, Quaas RL, Thallman RM, Wheeler TL, Shackelford SD, et al. Association of markers in the bovine CAPN1 gene with meat tenderness in large crossbred populations that sample influential industry sires. J Anim Sci 2004; 82:3474–81. https://doi.org/10.2527/2004.82123474x
- Morris CA, Cullen NG, Hickey SM, Dobbie PM, Veenvliet BA, Manley TR, et al. Genotypic effects of calpain 1 and calpastatin on the tenderness of cooked M. longissimus dorsi steaks from Jersey x Limousin, Angus and Hereford-cross cattle. Anim Genet 2006; 37:411–4. https://doi.org/10.1111/j.1365-2052.2006.01483.x
- Casas E, White SN, Riley DG, Smith TPL, Brennemant RA, Olson TA, et al. Assessment of single nucleotide polymorphisms in genes residing on chromosomes 14 and 29 for association with carcass composition traits in Bos indicus cattle. J Anim Sci 2005; 83(1):13–9. https://doi.org/10.2527/2005.83113x
- Allais S, Journaux L, Levéziel H, Payet-Duprat N, Raynaud P, Hocquette JF, et al. Effects of polymorphisms in the calpastatin and μ-calpain genes on meat tenderness in 3 French beef breeds. J Anim Sci 2011; 89:1–11. https://doi.org/10.2527/jas.2010-3063
- Corva PM, Soria L, Schor A, Villarreal E, Cenci MP, Motter M, et al. Association of CAPN1 and CAST gene polymorphisms with meat tenderness in Bos taurus beef cattle from Argentina. Genet Mol Biol 2007; 30:1064–1069. https://doi.org/10.1590/S1415-47572007000600006
- Lee SH, Kim SC, Chai HH, Cho SH, Kim HC, Lim D, et al. Mutations in calpastatin and μ-calpain are associated with meat tenderness, flavor and juiciness in Hanwoo (Korean cattle): Molecular modeling of the effects of substitutions in the calpastatin/μ-calpain complex. Meat Sci 2014; 96(4):1501–8. https://doi.org/10.1016/j.meatsci.2013.11.026
- White SN, Casas E, Wheeler TL, Shackelford SD, Koohmaraie M, Riley DG, et al. A new single nucleotide polymorphism in CAPN1 extends the current tenderness marker test to include cattle of Bos indicus, Bos taurus, and crossbred descent. J Anim Sci 2005; 83:2001–8. https://doi.org/10.2527/2005.8392001x
- Pinto LF, Ferraz JB, Meirelles F V., Eler JP, Rezende FM, Carvalho ME, et al. Association of SNPs on CAPN1 and CAST genes with tenderness in Nellore cattle. Genet Mol Res 2010; 9(3):1431–42. https://doi.org/10.4238/vol9-3gmr881
- Casas E, White SN, Wheeler TL, Shackelford SD, Koohmaraie M, Riley DG, et al. Effects of calpastatin and u - calpain markers in beef cattle on tenderness traits. J Anim Sci 2006; 84:520–5. https://doi.org/10.2527/2006.843520x
- Mazzucco JP, Melucci LM, Villarreal EL, Mezzadra C a, Soria L, Corva P, et al. Effect of ageing and μ-calpain markers on meat quality from Brangus steers finished on pasture. Meat Sci 2010; 86(3):878–82. https://doi.org/10.1016/j.meatsci.2010.07.015
- Curi RA, Chardulo LAL, Mason MC, Arrigoni MDB, Silveira AC, De Oliveira HN. Effect of single nucleotide polymorphisms of CAPN1 and CAST genes on meat traits in Nellore beef cattle (Bos indicus) and in their crosses with Bos taurus. Anim Genet 2009; 40:456–62. https://doi.org/10.1111/j.1365-2052.2009.01859.x
- Barendse W. DNA markers for meat tenders. Queensland (AU); US 2004/0115678: 2002.
- Garcia MD, Michal JJ, Gaskins CT, Reeves JJ, Ott TL, Liu Y, et al. Significant association of the calpastatin gene with fertility and longevity in dairy cattle. Anim Genet 2006; 37:304–5. https://doi.org/10.1111/j.1365-2052.2006.01443.x
- Schenkel F, Miller S, Jiang Z, Mandell I, Ye X, Li H, et al. Association of a single nucleotide polymorphism in the calpastatin gene with carcass and meat quality traits of beef cattle. J Anim Sci 2006; 84:291–9. https://doi.org/10.2527/2006.842291x
- Ilian MA, Morton JD, Kent MP, Couteur CE Le, Hickford J, Cowley R, et al. Intermuscular variation in tenderness: Association with the ubiquitous and muscle-specific calpains. J Anim Sci 2001; 79:122–32. https://doi.org/10.2527/2001.791122x
- Muroya S, Neath KE, Nakajima I, Oe M, Shibata M, Ojima K, et al. Differences in mRNA expression of calpains, calpastatin isoforms and calpain/calpastatin ratios among bovine skeletal muscles. Anim Sci J 2012; 83:252–9. https://doi.org/10.1111/j.1740-0929.2011.00954.x
- Saccà E, Corazzin M, Pizzutti N, Lippe G, Piasentier E. Early post mortem expression of genes related to tenderization in two Italian Simmental young bulls' skeletal muscles differing in contractile type. Anim Sci J 2015; 1-8
- Gandolfi G, Pomponio L, Ertbjerg P, Karlsson AH, Nanni Costa L, Lametsch R, et al. Investigation on CAST, CAPN1 and CAPN3 porcine gene polymorphisms and expression in relation to post-mortem calpain activity in muscle and meat quality. Meat Sci 2011; 88:694–700. https://doi.org/10.1016/j.meatsci.2011.02.031
- Ouali A, Talmant A. Calpains and calpastatin distribution in bovine, porcine and ovine skeletal muscles. Meat Sci 1990; 28(4):331–48. https://doi.org/10.1016/0309-1740(90)90047-A
- Giusti J, Castan E, Dal Pai M, Arrigoni MDB, Rodrigues Baldin S, De Oliveira HN. Expression of genes related to quality of Longissimus dorsi muscle meat in Nellore (Bos indicus) and Canchim (5/8 Bos taurus × 3/8 Bos indicus) cattle. Meat Sci 2013; 94:247–52. https://doi.org/10.1016/j.meatsci.2013.02.006
- Mberema CHH, Lietz G, Kyriazakis I, Sparagano OAE. The effects of gender and muscle type on the mRNA levels of the calpain proteolytic system and beef tenderness during post-mortem aging. Livest Sci 2016; 185:123–30. https://doi.org/10.1016/j.livsci.2016.01.020
- Jennings TD, Gonda MG, Underwood KR, Wertz-Lutz AE, Blair AD. The influence of maternal nutrition on expression of genes responsible for adipogenesis and myogenesis in the bovine fetus. Animal 2017; 10(10):1697–705. https://doi.org/10.1017/S1751731116000665
- Korn KT, Lemenager RP, Claeys MC, Waddell JN, Engstrom M, Schoonmaker JP. Supplemental vitamin D3 and zilpaterol hydrochloride. II. Effect on calcium concentration, muscle fiber type, and calpain gene expression of feedlot steers. J Anim Sci 2013; 91:3332–40. https://doi.org/10.2527/jas.2012-5962
- Niciura SCM, Ibelli AMG, Gouveia GV, Gromboni JGG, Rocha MIP, de Souza MM, et al. Polymorphism and parent-of-origin effects on gene expression of CAST, leptin and DGAT1 in cattle. Meat Sci 2012; 90(2):507–10. https://doi.org/10.1016/j.meatsci.2011.08.005
- Nattrass GS, Cafe LM, McIntyre BL, Gardner GE, McGilchrist P, Robinson DL, et al. A post-transcriptional mechanism regulates calpastatin expression in bovine skeletal muscle. J Anim Sci 2014; 92(2):443–55. https://doi.org/10.2527/jas.2013-6978
- Maddock KR, Huff-Lonergan E, Rowe LJ, Lonergan SM. Effect of pH and ionic strength on mu- and m-calpain inhibition by calpastatin. J Anim Sci 2005; 83(6):1370–6. https://doi.org/10.2527/2005.8361370x
- Pomponio L, Ertbjerg P. The effect of temperature on the activity of u- and m-calpain and calpastatin during post-mortem storage of porcine longissimus muscle. Meat Sci 2012; 91(1):50–5. https://doi.org/10.1016/j.meatsci.2011.12.005
- Geesink GH, Bekhit AD, Bickerstaffe R. Rigor temperature and meat quality characteristics of lamb longissimus muscle. J Anim Sci 2000; 78:2842–8. https://doi.org/10.2527/2000.78112842x
- Camou JP, Marchello J a., Thompson VF, Mares SW, Goll DE. Effect of postmortem storage on activity of u- and m-calpain in five bovine muscles. J Anim Sci 2007; 85:2670–81. https://doi.org/10.2527/jas.2007-0164
- Colle MJ, Doumit ME. Effect of extended aging on calpain-1 and -2 activity in beef longissimus lumborum and semimembranosus muscles. Meat Sci Elsevier; 2017; 131:142–5. https://doi.org/10.1016/j.meatsci.2017.05.014
- Phelps KJ, Drouillard JS, Silva MB, Miranda LDF, Ebarb SM, Van Bibber-Krueger CL, et al. Effect of extended postmortem aging and steak location on myofibrillar protein degradation and warner-bratzler shear force of beef M. semitendinosus steaks. J Anim Sci 2016; 94(1):412–23. https://doi.org/10.2527/jas.2015-9862
- Magolski JD, Berg EP, Hall NL, Anderson VL, Keller WL, Jeske TM, et al. Evaluation of feedlot cattle working chute behavior relative to temperament, tenderness, and postmortem proteolysis. Meat Sci 2013; 95:92–7. https://doi.org/10.1016/j.meatsci.2013.04.001
- Kristensen L, Christensen M, Ertbjerg P. Activities of calpastatin, u-calpain and m-calpain are stable during frozen storage of meat. Meat Sci 2006; 72:116–20. https://doi.org/10.1016/j.meatsci.2005.06.010
- Cruzen SM, Paulino PVR, Lonergan SM, Huff-Lonergan E. Postmortem proteolysis in three muscles from growing and mature beef cattle. Meat Sci 2014; 96(2):854–61. https://doi.org/10.1016/j.meatsci.2013.09.021
- Guillemin N, Jurie C, Cassar-Malek I, Hocquette JF, Renand G, Picard B. Variations in the abundance of 24 protein biomarkers of beef tenderness according to muscle and animal type. Animal 2011; 5(6):885–94. https://doi.org/10.1017/S1751731110002612
- Lee CE, McArdle A, Griffiths RD. The role of hormones, cytokines and heat shock proteins during age-related muscle loss. Clin Nutr 2007; 26(5):524–34. https://doi.org/10.1016/j.clnu.2007.05.005
- Kristensen L, Therkildsen M, Riis B, Sørensen MT, Oksbjerg N, Purslow PP, et al. Dietary-induced changes of muscle growth rate in pigs : Effects on in vivo and postmortem muscle proteolysis and meat quality. J Anim Sci 2002; 820:2862–71. https://doi.org/10.2527/2002.80112862x
- Saccà E, Pizzutti N, Corazzin M, Lippe G, Piasentier E. Assessment of calpain and caspase systems activities during ageing of two bovine muscles by degradation patterns of α II spectrin and PARP-1. Anim Sci J 2016; 87:462–6. https://doi.org/10.1111/asj.12473