Patrones de expresiòn del gen Hey1 durante el desarrollo de arcos branquiales y prominencias faciales
Hey1 gene expression patterns during the development of branchial arches and facial prominences
Mostrar biografía de los autores
Objetivo. El presente estudio tuvo como objetivo describir detalladamente los patrones de expresión del gen Hey1, un efector de la vía Notch durante el desarrollo de arcos branquiales y prominencias faciales. Materiales y métodos. Se incubaron huevos fertilizados de pollo (Gallus gallus) obtenidos de una granja local entre 37.5-38.5ºC con humedad relativa del 70% hasta que los embriones alcanzaron los estadios HH14 hasta HH25 de Hamilton-Hamburger. Las sondas Hey1 marcadas con digoxigenina-UTP se generaron a partir de plásmidos linearizados con T3 polimerasa por transcripción in vitro. Luego se realizó hibridación in situ sobre embriones completos. Se obtuvieron al menos 3 repeticiones (n = 3) para cada estadio. Para confirmar los resultados observados en embriones completos, se realizaron cortes sagitales y coronales de 10 µm. Resultados. Durante los estadios de desarrollo HH14 y HH18, la expresión del gen Hey1 se localizó en el endodermo de las bolsas branquiales. La expresión génica de Hey1 también se observó en el epitelio que cubre las prominencias maxilares y mandibulares durante las etapas de desarrollo HH19 y HH21, así como en el epitelio nasal entre HH19 y HH25. También se detectaron transcritos de Hey1 en el epitelio que cubre la prominencia frontonasal durante la etapa HH21. Conclusiones. Estos patrones de expresión sugieren la participación de este componente de la vía de señalización Notch en la morfogénesis craneofacial, posiblemente estableciendo patrones de segmentación faríngea durante las primeras etapas y / o regulando la proliferación y diferenciación celular durante las últimas etapas del desarrollo facial.
Visitas del artículo 2030 | Visitas PDF
Descargas
- Trainor PA. Molecular Blueprint for Craniofacial Morphogenesis and Development. Stem Cells in Craniofacial Development and Regeneration: John Wiley & Sons, Inc.; 2013. p. 1-29. https://doi.org/10.1002/9781118498026.ch1
- Grevellec A, Tucker AS. The pharyngeal pouches and clefts: Development, evolution, structure and derivatives. Semin Cell Dev Biol . 2010;21(3):325-32. https://doi.org/10.1016/j.semcdb.2010.01.022
- Parada C, Chai Y. Mandible and Tongue Development. Curr Top Dev Biol. 2015;115:31-58. . https://doi.org/10.1016/bs.ctdb.2015.07.023
- Liu B, Rooker SM, Helms JA. Molecular control of facial morphology. Semin cell dev biol. 2010;21(3):309-13. https://doi.org/10.1016/j.semcdb.2009.09.002
- Minoux M, Rijli FM. Molecular mechanisms of cranial neural crest cell migration and patterning in craniofacial development. Development. 2010;137(16):2605-21. https://doi.org/10.1242/dev.040048
- Szabo-Rogers HL, Smithers LE, Yakob W, Liu KJ. New directions in craniofacial morphogenesis. Dev Biol. 2010;341(1):84-94. https://doi.org/10.1016/j.ydbio.2009.11.021
- Talora C, Campese AF, Bellavia D, Felli MP, Vacca A, Gulino A, et al. Notch signaling and diseases: an evolutionary journey from a simple beginning to complex outcomes. Biochim Biophys Acta . 2008;1782(9):489-97. https://doi.org/10.1016/j.bbadis.2008.06.008
- Schwanbeck R, Martini S, Bernoth K, Just U. The Notch signaling pathway: molecular basis of cell context dependency. Eur J Cell Biol. 2011;90(6-7):572-81. https://doi.org/10.1016/j.ejcb.2010.10.004
- Iso T, Kedes L, Hamamori Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol. 2003;194(3):237-55. https://doi.org/10.1002/jcp.10208
- Leimeister C, Externbrink A, Klamt B, Gessler M. Hey genes: a novel subfamily of hairy- and Enhancer of split related genes specifically expressed during mouse embryogenesis. Mech Develop. 1999;85(1-2):173-7. https://doi.org/10.1016/S0925-4773(99)00080-5
- Ratie L, Ware M, Barloy-Hubler F, Rome H, Gicquel I, Dubourg C, et al. Novel genes upregulated when NOTCH signalling is disrupted during hypothalamic development. Neural Dev. 2013;8:25. https://doi.org/10.1186/1749-8104-8-25
- Stefanovic S, Barnett P, van Duijvenboden K, Weber D, Gessler M, Christoffels VM. GATA-dependent regulatory switches establish atrioventricular canal specificity during heart development. Nat. Commun. 2014;5:3680. https://doi.org/10.1038/ncomms4680
- Tateya T, Imayoshi I, Tateya I, Ito J, Kageyama R. Cooperative functions of Hes/Hey genes in auditory hair cell and supporting cell development. Dev Biol. 2011;352(2):329-40. https://doi.org/10.1016/j.ydbio.2011.01.038
- Salie R, Kneissel M, Vukevic M, Zamurovic N, Kramer I, Evans G, et al. Ubiquitous overexpression of Hey1 transcription factor leads to osteopenia and chondrocyte hypertrophy in bone. Bone. 2010;46(3):680-94. https://doi.org/10.1016/j.bone.2009.10.022
- Zuniga E, Stellabotte F, Crump JG. Jagged-Notch signaling ensures dorsal skeletal identity in the vertebrate face. Development. 2010;137(11):1843-52. https://doi.org/10.1242/dev.049056
- Neves J, Parada C, Chamizo M, Giraldez F. Jagged 1 regulates the restriction of Sox2 expression in the developing chicken inner ear: a mechanism for sensory organ specification. Development. 2011;138(4):735-44. https://doi.org/10.1242/dev.060657
- Rizzoti K, Lovell-Badge R. SOX3 activity during pharyngeal segmentation is required for craniofacial morphogenesis. Development. 2007;134(19):3437-48. https://doi.org/10.1242/dev.007906
- Graham A, Okabe M, Quinlan R. The role of the endoderm in the development and evolution of the pharyngeal arches. J Anat. 2005;207(5):479-87. https://doi.org/10.1111/j.1469-7580.2005.00472.x
- Szabo-Rogers HL, Geetha-Loganathan P, Nimmagadda S, Fu KK, Richman JM. FGF signals from the nasal pit are necessary for normal facial morphogenesis. Dev Biol. 2008;318(2):289-302. https://doi.org/10.1016/j.ydbio.2008.03.027
- Tak HJ, Park TJ, Piao Z, Lee SH. Separate development of the maxilla and mandible is controlled by regional signaling of the maxillomandibular junction during avian development. Dev Dynam : an official publication of the American Association of Anatomists. 2017;246(1):28-40. https://doi.org/10.1002/dvdy.24465
- Minkoff R, Kuntz AJ. Cell proliferation and cell density of mesenchyme in the maxillary process and adjacent regions during facial development in the chick embryo. J Embryol Exp Morph. 1978;46:65-74.
- Dunlop LL, Hall BK. Relationships between cellular condensation, preosteoblast formation and epithelial-mesenchymal interactions in initiation of osteogenesis. Int J Dev Biol. 1995;39(2):357-71.
- Ekanayake S, Hall BK. The in vivo and in vitro effects of bone morphogenetic protein-2 on the development of the chick mandible. Int J Dev Biol. 1997;41(1):67-81.
- Merrill AE, Eames BF, Weston SJ, Heath T, Schneider RA. Mesenchyme-dependent BMP signaling directs the timing of mandibular osteogenesis. Development. 2008;135(7):1223-34. https://doi.org/10.1242/dev.015933
- Oldershaw RA, Hardingham TE. Notch signaling during chondrogenesis of human bone marrow stem cells. Bone. 2010;46(2):286-93. https://doi.org/10.1016/j.bone.2009.04.242
- Oldershaw RA, Tew SR, Russell AM, Meade K, Hawkins R, McKay TR, et al. Notch signaling through Jagged-1 is necessary to initiate chondrogenesis in human bone marrow stromal cells but must be switched off to complete chondrogenesis. Stem Cells. 2008;26(3):666-74. https://doi.org/10.1634/stemcells.2007-0806
- Hu D, Marcucio RS. Unique organization of the frontonasal ectodermal zone in birds and mammals. Dev Biol. 2009;325(1):200-10. https://doi.org/10.1016/j.ydbio.2008.10.026
- Abzhanov A, Cordero DR, Sen J, Tabin CJ, Helms JA. Cross-regulatory interactions between Fgf8 and Shh in the avian frontonasal prominence. Congenit Anom. 2007;47(4):136-48. https://doi.org/10.1111/j.1741-4520.2007.00162.x
- Szabo-Rogers HL, Geetha-Loganathan P, Whiting CJ, Nimmagadda S, Fu K, Richman JM. Novel skeletogenic patterning roles for the olfactory pit. Development. 2009;136(2):219-29. https://doi.org/10.1242/dev.023978