Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Comunicación bidireccional entre el sistema inmune y neuroendocrino a través de la hormona de crecimiento, prolactina y hepcidina

Comunicación bidireccional entre el sistema inmune y neuroendocrino a través de la hormona de crecimiento, prolactina y hepcidina



Abrir | Descargar

Cómo citar
Enríquez V, C., Paez R, P., & Campos G, R. (2013). Comunicación bidireccional entre el sistema inmune y neuroendocrino a través de la hormona de crecimiento, prolactina y hepcidina. Revista MVZ Córdoba, 18(2), 3585-3593. https://doi.org/10.21897/rmvz.184

Dimensions
PlumX
Cruz Enríquez V
Paola Paez R
Rómulo Campos G

RESUMEN

Se ha planteado que la hormona de crecimiento (GH) y la Prolactina (PRL) pueden intervenir en procesos infecciosos como inmunomoduladores vía receptores específicos; revelando una conexión entre el sistema inmune y el sistema endocrino en los tejidos, donde actúan como citoquinas a través de diferentes rutas de señalización. Igualmente, la hepcidina (HAMP), hormona producida en los hepatocitos como respuesta al exceso de hierro y a estímulos inflamatorios, es considerada un enlace entre el metabolismo del mineral, la defensa del hospedero y los procesos inflamatorios, debido a su capacidad de privar del hierro a los microorganismos. Se sugiere que en un proceso infeccioso, la síntesis, secreción y regulación de GH ocurre a través de la producción de citoquinas como factor de necrosis tumoral alfa (TNF-α) e interleuquina-1 beta (IL-1β), las cuales actúan en el hipotálamo, estimulando la liberación ya sea de la hormona liberadora de somatotropina o de somatostatina; por otro lado, se ha reportado que células linfoides, incluyendo linfocitos T y B y células dendríticas, producen GH, PRL biológicamente activa con propiedades inmunoreguladoras.


Visitas del artículo 1655 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Kelley KW, Weigent DA, Kooijman R. Protein Hormones and Immunity. Brain Behav Immun 2007; 21(4):384–392. http://dx.doi.org/10.1016/j.bbi.2006.11.010
  2. O'Connor JC, McCusker RH, Strle K, Johnson RW, Dantzer R, Kelley KW. Regulation of IGF-I function by proinflammatory cytokines: at the interface of immunology and endocrinology. Cell Immunol 2008; 252:91-110. http://dx.doi.org/10.1016/j.cellimm.2007.09.010
  3. Redelman D, Welniak LA, Taub D, Murphy WJ. Review Neuroendocrine hormones such as growth hormone and prolactin are integral members of the immunological cytokine network. Cel Immunol 2008; 252:111–121. http://dx.doi.org/10.1016/j.cellimm.2007.12.003
  4. Tripathi A, Sodhi A. Production of nitric oxide by murine peritoneal macrophages in vitro on treatment with prolactin and growth hormone: Involvement of protein tyrosine kinases, Ca++, and MAP kinase signal transduction pathways. Mol Immunol 2007; 44:3185–3194. http://dx.doi.org/10.1016/j.molimm.2007.01.024
  5. Falzacappa MV, Muckenthaler MU. Hepcidin: iron-hormone and anti-microbial peptide. Gene 2005; 364:37-44. http://dx.doi.org/10.1016/j.gene.2005.07.020
  6. Verga Falzacappa MV, Vujic Spasic M, Kessler R, Stolte J, Hentze MW, Muckenthaler MU. STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation. Blood 2007; 109:353–358. http://dx.doi.org/10.1182/blood-2006-07-033969
  7. Carroll JA. Bidirectional communication: Growth and immunity in domestic livestock. J Anim Sci 2008; 86:E126–E137.
  8. Hattori N. Review Expression, regulation and biological actions of growth hormone (GH) and ghrelin in the immune system. Growth Horm IGF Res 2009; 19:187–197. http://dx.doi.org/10.1016/j.ghir.2008.12.001
  9. Elenkov L J. Neurohormonal–cytokine interaction; implication for inflammation, common human diseases and well-being. Neurochem Int 2008; 52:40–51. http://dx.doi.org/10.1016/j.neuint.2007.06.037
  10. Torres RC, Aguilar F. Relación anatómica, clínica y neurofisiológica entre los sistemas nervioso, endocrino e inmune. Plast & Rest Neurol 2006; 5(1): 75-84.
  11. Mocchegiani E, Santarelli L, Costarelli L, Cipriano C, Muti E, Giacconi R, Malavolta M. Plasticity of neuroendocrine–thymus interactions during ontogeny and ageing: role of zinc and arginine. Ageing Res Rev 2006; 5:281–309. http://dx.doi.org/10.1016/j.arr.2006.06.001
  12. Peyssonnaux C, Zinkernagel AS, Datta V, et al. TLR4-dependent hepcidin expression by myeloid cells in response to bacterial pathogens. Blood 2006; 107:3727–3732. http://dx.doi.org/10.1182/blood-2005-06-2259
  13. Pinto JP, Dias V, Zoller H, Porto G, Carmo H, Carvalho F et al.Hepcidin messenger RNA expression in human lymphocytes. Immunol 2010; 130:217–230. http://dx.doi.org/10.1111/j.1365-2567.2009.03226.x
  14. Borghetti P, Saleri R, MocchegianiE, Corradi A, Martelli P. Infection, immunity and the neuroendocrine response. Vet Immunol Immunopathol 2009; 130:141–162. http://dx.doi.org/10.1016/j.vetimm.2009.01.013
  15. Correa Silvia G, Maccioni M, Rivero VE, Iribarren P, Sotomayor CE, Riera CM. Cytokines and the immune-neuroendocrine network: what did we learn from infection and autoimmunity? Cytokine Growth Factor Rev 2007; 18:125–134.
  16. Vijayakumar A, Novosyadlyy R, Wu Y, Yakar S, LeRoith D. Biological effects of growth hormone on carbohydrate and lipid metabolism. Growth Horm IGF Res 2010; 20:1–7. http://dx.doi.org/10.1016/j.ghir.2009.09.002
  17. Kojima M, Hosada H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growthhormone-releasing acylated peptide from stomach. Nat 1999; 402:656–60. http://dx.doi.org/10.1038/45230
  18. ThanThan S, Mekaru C, Seki N, Hidaka K, Ueno A, ThidarMyint H et al. Endogenous ghrelin released in response to endothelin stimulates growth hormone secretion in cattle. Domest Anim Endocrinol 2010; 38(1):1-12. http://dx.doi.org/10.1016/j.domaniend.2009.07.007
  19. Sodhi A, Tripathi A. Prolactin and growth hormone induce differential cytokine and chemokine profile in murine peritoneal macrophages in vitro: Involvement of p_38 MAP kinase, STAT3 and NF_ κB. Cytokine 2008; 41:162–173. http://dx.doi.org/10.1016/j.cyto.2007.11.007
  20. Baeza I, Alvarado C, Ariznavarreta C, Castillo C, Tresguerres JA, De la Fuente M. Effect of growth hormone treatment on lymphocyte functions in old male rats. Neuroimmunomodulation 2008; 15(4-6): 279-284.
  21. Baeza I, Alvarado C, Álvarez P, Salazar V, Castillo C, Ariznavarreta C, et al. Improvement of leucocyte functions in ovariectomised aged rats after treatment with growth hormone, melatonin, oestrogens or phyto-oestrogens. J Reprod Immunol. 2009; 80(1):70-79. http://dx.doi.org/10.1016/j.jri.2009.02.002
  22. Frare EO, Elena Santello F, Caetano LC, Caldeira JC, Toldo MP, Prado JC. Growth hormones therapy in immune response against Trypanosoma cruzi. Res Vet Sci 2010; 88:273–278. http://dx.doi.org/10.1016/j.rvsc.2009.10.001
  23. Briard, N., V. Guillaume, C. Frachebois, M. Rico-Gomez, N. Sauze, C. Oliver, and A. Dutour. Endotoxin injection increases growth hormone and somatostatin secretion in sheep. Endocrinol 1998; 139:2662–2669. http://dx.doi.org/10.1210/endo.139.6.6072
  24. Briard N, Dadoun F, Pommier G, Sauze N, Lebouc Y, Oliver C et al. IGF-1/IGFBPs system response to endotoxin challenge in sheep. J Endocrinol 2000; 164:361–369. http://dx.doi.org/10.1677/joe.0.1640361
  25. Priego T, Granado M, Iba-ez de Cáceres I, Martín AI, Villanúa MA, Calderón A. Endotoxin at low doses stimulates pituitary GH whereas it decreases IGF-I and IGFBP-3 in rats. J Endocrinol 2003; 179:107–17. http://dx.doi.org/10.1677/joe.0.1790107
  26. Daniel JA, Elsasser TH, Martinez A, Steele B, K. Whitlock BK,Sartin JL. Interleukin-1beta and tumor necrosisfactor-alpha mediation of endotoxin action on growth hormone. Am J Physiol Endocrinol Metab 2005. 289: E650–E657.
  27. Priego T, Granado M, Iba-ez de Cáceres I, Martín AI, Villanúa MA, Calderón A. Endotoxin administration increases hypothalamic somatostatin mRNA through nitric oxide release. Regulat Pept 2005; 124:113– 118. http://dx.doi.org/10.1016/j.regpep.2004.07.001
  28. Wang X, Jiang J, Warram J, Baumann G, Gan Y, MenonR et al. Endotoxin-Induced Proteolytic Reduction in Hepatic Growth Hormone (GH) Receptor: A Novel Mechanism for GH Insensitivity. Mol Endocrinol 2008; 22: 1427–1437. http://dx.doi.org/10.1210/me.2007-0561
  29. Rogatsky I, Ivashkiv LB. Review Article Glucocorticoid modulation of cytokine signaling. J compilation 2006; 68:1–12.
  30. Tripathi A, Sodhi A. Growth hormone-induced production of cytokines in murine peritoneal macrophages in vitro: Role of JAK/STAT, PI3K, PKC and MAP kinases. Immunobiol 2009; 214:430–440. http://dx.doi.org/10.1016/j.imbio.2008.11.013
  31. Sodhi A, Tripathi A. Prolactin and growth hormone induce differential cytokine and chemokine profile in murine peritoneal macrophages in vitro: Involvement of p-38 MAP kinase, STAT3 and NF_κB. Cytokine 2008; 41:162–173. http://dx.doi.org/10.1016/j.cyto.2007.11.007
  32. Tripathi A, Sodhi A. Prolactin-induced production of cytokines in macrophages in vitro involves JAK/STAT and JNK MAPK pathways. International Immunol 2007; 20 (3):327–336. http://dx.doi.org/10.1093/intimm/dxm145
  33. Xu D, Lin L, Lin X, Huang Z, Lei Z. Immunoregulation of autocrine prolactin: Suppressing the expression of costimulatory molecules and cytokines in T lymphocytes by prolactin receptor knockdown. Cel Immunol 2010; 263(1):77-78. http://dx.doi.org/10.1016/j.cellimm.2010.02.018
  34. Nemirovsky MS, Homberg JC. Fundamentos de inmunología. Bases estructurales, fisiológicas y fisiopatologías de la respuesta inmune. México: Trillas; 2003.
  35. Carre-o PC, Sacedón R, Jiménez E, Vicente, Zapata AG. Prolactin affects both survival and differentiation of T-cell progenitors.J Neuroimmunol 2005; 160:135–145. http://dx.doi.org/10.1016/j.jneuroim.2004.11.008
  36. Bolander J. Prolactin activation of mammary nitric oxide synthase: molecular mechanisms. J Mol Endocrinol 2002; 28:45–51. http://dx.doi.org/10.1677/jme.0.0280045
  37. Kumar A, Singh SM, Sodhi A. Effect of prolactin on nitric oxide and interleukin-1 production of murine peritoneal macrophages: Role of Ca2+ and protein kinace C. Int Societ immunopharmacol 1997; 19 (3): 129-133. http://dx.doi.org/10.1016/S0192-0561(97)00022-2
  38. Boutet P, Sulon J, Closset R, DetilleuxJ, Beckers J, Bureau F et al. Prolactin-Induced Activation of Nuclear Factor κB in Bovine Mammary Epithelial Cells: Role in Chronic Mastitis. J Dairy Sci 2007; 90:155–164. http://dx.doi.org/10.3168/jds.S0022-0302(07)72617-6
  39. Vorbach C, Capecchi MR, Penninger JM. Evolution of the mammary gland from the innate immune system?. BioEssays 2006; 28:606–616. http://dx.doi.org/10.1002/bies.20423
  40. Hugman A. Hepcidin: an important new regulator of iron homeostasis. Clin Lab Haematol 2006; 28(2):75-83. http://dx.doi.org/10.1111/j.1365-2257.2006.00768.x
  41. Krause A, Neitz S, Mägert HJ, Schulz A, Forssmann WG, Schulz Knappe P, Adermann K. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. Antimicrobial activity. FEBS Lett 2000; 480:147–150. http://dx.doi.org/10.1016/S0014-5793(00)01920-7
  42. Park CH, Valore EV, Waring AJ, Ganz T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J BiolChem SA 2001; 276:7806-7810. http://dx.doi.org/10.1074/jbc.m008922200
  43. Nemeth E, Ganz T. Regulation of iron metabolism by hepcidin. Annu Rev Nutr 2006; 26:323–342. http://dx.doi.org/10.1146/annurev.nutr.26.061505.111303
  44. Del Castillo A, De Portugal J. Hepcidina, una nueva proteína en la homeostasis del hierro. An Med Interna 2003; 20:605-606. http://dx.doi.org/10.4321/s0212-71992003001200001
  45. Andrews N, Schmidt P. Iron Homeostasis. Annu Rev Physiol 2007; 69:69-85. http://dx.doi.org/10.1146/annurev.physiol.69.031905.164337
  46. Zhang S, Enns C. Iron Homeostasis: Recently Identified Proteins Provide Insight into Novel Control Mechanisms. J Biol.Chem 2009; 284(2):711–715.
  47. Nicolas G, Bennoun M, Devaux I, et al. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. PNAS 2001; 98:8780-8785. http://dx.doi.org/10.1073/pnas.151179498
  48. Nicolas G, Bennoun M, Porteu A, Mativet S, Beaumont C, Grandchamp B. Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. PNAS 2002; 99: 4596–4601. http://dx.doi.org/10.1073/pnas.072632499
  49. Ganz T. Hepcidin, a key regulator of iron metabolism and mediator of anemia on inflammation. Blood 2003; 103(3):783-788. http://dx.doi.org/10.1182/blood-2003-03-0672
  50. Lee P, Peng H, Gelbart T, Wang L, Beutler E. Regulation of hepcidin transcription by interleukin-1 and interleukin-6. PNAS 2005; 102(6):1906-1910. http://dx.doi.org/10.1073/pnas.0409808102
  51. Sow FB, Florence WC, Satoskar AR, Schlesinger LS, Zwilling BS, Lafuse WP. Expression and localization of hepcidin in macrophages: a role in host defense against tuberculosis. J Leukoc Biol 2007; 82:934–945. http://dx.doi.org/10.1189/jlb.0407216
  52. Nemeth E. Regulation of iron metabolism by hepcidin. Annu Rev Nutr 2006; 26:323-42. http://dx.doi.org/10.1146/annurev.nutr.26.061505.111303

Sistema OJS 3.4.0.3 - Metabiblioteca |