Respuesta biológica, nutricional y hematoinmune en juveniles Cherax quadricarinatus (Decapoda: Parastacidae) alimentados con mezcla probiótica

##plugins.themes.bootstrap3.article.main##

Yuniel Méndez Martínez
Yenny G. Torres-Navarrete
Edilmar Cortés-Jacinto
Marcelo U. García-Guerrero
Luis H. Hernández-Hernández
Resumen

Objetivo: Evaluar indicadores biológicos, nutricionales y hematoinmunes en juveniles Cherax quadricarinatus que fueron cultivados y alimentados con una mezcla de probióticos. Materiales y métodos: Un diseño completamente aleatorizado (DCA) con seis tratamientos: 0 (control), 1×102 µL, 2×102 µL, 3×102 µL, 4×102 µL y 5×102 µL de mezcla de probióticos (Bacterol Shrimp Forte), con tres repeticiones cada una; se utilizaron 18 tanques experimentales de diametro 1.7 m y área de 2.26 m2, con una densidad de 20 juveniles (0.95±0.10 g y 7.78±0.77mm) por tanque durante 60 días. Se midieron los parámetros biológicos (peso, longitud, aumento de peso, aumento de peso, tasa de crecimiento específico, aumento de longitud, aumento de longitud y supervivencia), nutricionales (conversión alimenticia, eficiencia alimenticia y eficiencia proteica) y hematoinmune (total de hemocitos, hemocitos diferenciales, tasa fagocítica, superóxido dismutasa y estrés hipóxico). Resultados: Para los indicadores biológicos, los mejores resultados (p<0.05) se obtuvieron al utilizar 4×102 µL del probiótico (peso final: 9.11 g; longitud final: 68.95 mm; tasa de crecimiento específico: 3.74). En cuanto a los parámetros nutricionales, los mejores resultados se obtuvieron con 3×102 µL (conversion alimenticia: 1.09, eficiencia alimenticia: 0.91 y eficiencia proteica: 2.61); aunque no hubo diferencias entre 3×102 y 4×102 µL. Para la respuesta hematoinmune, hubo diferencias (p <  0.05) para todos los indicadores en estudio, con un mejor desempeño para 4×102 µL de la mezcla de probióticos. Conclusiones: La mezcla de probióticos induce la respuesta hematoinmune, biológica y nutricional con la mejor respuesta para concentraciones de 3×102 µL y 4×102 µL.

Palabras clave

Descargas

Los datos de descargas todavía no están disponibles.

##plugins.themes.bootstrap3.article.details##

Biografía del autor/a / Ver

Yuniel Méndez Martínez, Universidad Técnica Estatal de Quevedo, Ecuador

Universidad Técnica Estatal de Quevedo (UTEQ), Facultad de Ciencias Agropecuarias, Quevedo, Los Ríos, Ecuador

Yenny G. Torres-Navarrete, Universidad Técnica Estatal de Quevedo, Ecuador

Universidad Técnica Estatal de Quevedo (UTEQ), Facultad de Ciencias Agropecuarias, Quevedo, Los Ríos, Ecuador

Edilmar Cortés-Jacinto, Centro de Investigaciones Biológicas del Noroeste, México

Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Programa de Acuicultura, La Paz, BCS, Mexico

Marcelo U. García-Guerrero, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional–Instituto Politécnico Nacional, México

Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional–Instituto Politécnico Nacional (CIIDIR-IPN), Santa Cruz Xoxocotlán, Oaxaca, Mexico

Luis H. Hernández-Hernández, Universidad Autónoma de México

Universidad Autónoma de México (UNAM), Facultad de Estudios Superiores Iztacala, Tlalnepantla, Edo. de México, Mexico

Danis M. Verdecía , Universidad de Granma, Cuba

Universidad de Granma (UDG), Facultad de Ciencias Agropecuarias, Bayamo, Granma, Cuba

Referencias / Ver

Sonnenholzner-Varas JI. ¿Hacia dónde va la acuicultura de equinodermos en América Latina? Potencial, retos y oportunidades. Rev Biol Trop. 2021; 69(S1):514-549. https://doi.org/10.15517/rbt. v69iSuppl.1.46393

FAO. FishStatJ tool for fishery statistics analysis, Release 2.0.0. Universal software for fishery statistical time series. Global capture and aquaculture production: Quantities 1950-2019; Aquaculture values 1984-2019. Food and Agriculture Organization (FAO) Fisheries Department, Fishery Information, Data and Statistics Unit. Rome; 2021. https://www.fao.org/fishery/statistics/software/fishstatj/en

Numes AL, Zengeya TS, Hoffman AC, Measey GJ, Wey OLF. Distribution and establishment of the alien Australian redclaw crayfish, Cherax quadricarinatus, in South Africa and Swaziland. PeerJ. 2017; 5:e3135. https://doi.org/10.7717/peerj.3135

Méndez-Martínez Y, Ceseña CE, Luna-González A, García-Guerrero MU, Martinez-Porchas M, Campa-Cordova AI, et al. Effects of different dietary protein‐energy ratios on growth, carcass amino acid and fatty acid profile of male and female Cherax quadricarinatus (von Martens, 1868) pre‐adults. Aquac Nutr. 2021. 00: 1-16. https://doi.org/10.1111/anu.13379

Norshida I, Mohd-Nasir MSA, Khaleel AG, Sallehuddin AS, Syed Idrus SN, Istiqomah I, et al. First wild record of Australian redclaw crayfish Cherax quadricarinatus (von Martens, 1868) in the East Coast of Peninsular Malaysia. Bioinvasions Rec. 2021; 10(2):360–368. https://doi.org/10.3391/bir.2021.10.2.14

Seenivasan C, Saravana Bhavan P, Radhakrishnan S. Effect of probiotics (BinifitTM) on survival, growth, biochemical constituents and energy budget of the freshwater prawn Macrobrachium rosenbergii post larvae. Elixir Aquaculture. 2011; 41:5919-5927. https://www.elixirpublishers.com/index.php?route=product/search&filter_name=macrobrachium&filter_type=Anywhere

Sapcharoen P, Rengpipat S. Effects of the probiotic Bacillus subtilis (BP 11 and BS 11) on the growth and survival of Pacific white shrimp, Litopenaeus vannamei. Aquac Nutr. 2013; 19(6):946-954. https://doi.org/10.1111/anu.12040

Peredo AM, Buentello A, Gatlin DMIII, Hume M. Evaluation of a Dairy-Yeast Prebiotic in the Diet of Juvenile Nile Tilapia, Oreochromis niloticus. J World Aquac Soc. 2015; 46:92–101. https://doi.org/10.4025/actascianimsci.v42i1.47960

Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dölz H, Millanao A, et al. Antimicrobial use in aquaculture re‐examined: its relevance to antimicrobial resistance and to animal and human health. Environ Microbiol. 2013; 15(7):1917-1942. https://doi.org/10.1111/1462-2920.12134

Kuebutornye FK, Abarike ED, Lu Y. A review on the application of Bacillus as probiotics in aquaculture. Fish Shellfish Immunol. 2019; 87:820-828. https://doi.org/10.1016/j.fsi.2019.02.010

Sumon MS, Ahmmed F, Khushi SS, Ahmmed MK, Rouf MA, Hasan-Chisty MA, et al. Growth performance, digestive enzyme activity and immune response of Macrobrachium rosenbergii fed with probiotic Clostridium butyricum incorporated diets. J King Saud Univ Sci. 2018; 30(1):21-28. http://dx.doi.org/10.1016/j.jksus.2016.11.003

Foysal J, Fotedar R, Siddik MA, Chaklader R, Tay A. Lactobacillus plantarum in black soldier fly (Hermetica illucens) meal modulates gut health and immunity of freshwater crayfish (Cherax cainii). Fish Shellfish Immunol. 2021; 108: 42-52. https://doi.org/10.1016/j.fsi.2020.11.020

Wee WC, Mok CH, Romano N, Ebrahimi M, Natrah I. Dietary supplementation use of Bacillus cereus as quorum sensing degrader and their effects on growth performance and response of Malaysian giant river prawn Macrobrachium rosenbergii juvenile towards Aeromonas hydrophila. Aquac Nutr. 2018; 24(6):1804-1812. https://doi.org/10.1111/anu.12819

Amrullah A, Wahidah W. Immune response and growth performance of crayfish Cherax quadricarinatus fed with synbiotic supplemented diet. JAI. 2019; 18(1):33-45. https://doi.org/10.19027/jai.18.1.33-45

Rebecca M, Gao Q, Sun C, Liu B, Song C, Adisu D, et al. Effect of dietary Clostridium butyricum and different feeding patterns on growth performance, antioxidant and immune capacity in freshwater prawn (Macrobrachium rosenbergii). Aquac Res. 2020; 52(1):12-22. https://doi.org/10.1111/are.14865

Ambas I, Fotedar R, Buller N. Health Status of Marron, Cherax cainii (Austin, 2002) Fed Customized Probiotic Bacillus mycoides. J Aquac Mar Biol. 2017; 6(4):00165. http://dx.doi.org/10.15406/jamb.2017.06.00165

Phupet B, Pitakpornpreecha T, Baowubon N, Runsaeng P, Utarabhand P. Lipopolysaccharide-and β-1, 3-glucan-binding protein from Litopenaeus vannamei: purification, cloning and contribution in shrimp defense immunity via phenoloxidase activation, Dev Comp Immunol. 2018; 81:167-179. https://doi: 10.1016/j.dci.2017.11.016

Kuebutornye FKA, Abarike ED, Lu Y. A review on the application of Bacillus as probiotics in aquaculture. Fish Shellfish Immunol. 2019; 87:820-828. https://doi.org/10.1016/j.fsi.2019.02.010

Babu DT, Antony SP, Joseph SP, Bright AR, Philip R. Marine yeast Candida aquaetextoris S527 as a potential immunostimulant in black tiger shrimp Penaeus monodon. J Inverte Pathol. 2013; 112(3):243–252. https://doi.org/10.1016/j.jip.2012.12.002

Vine NG, Leukes WD, Kaiser H. Probiotics in marine larviculture. FEMS Microbiol Rev. 2016; 30(3):404-427. https://doi.org/10.1111/j.1574-6976.2006.00017.x

Méndez-Martínez Y, Pacheco-Morales GK, Del Barco-Ibarra KA, Torres-Navarrete YG, Hernández-Vergara MP. Respuesta bioquímica e inmune en tilapia roja (Oreochromis mossambicus × O. niloticus) con suplementación de quitosano en dieta. Rev Fac Agron Luz. 2021; 38(4), 1016-1034. https://doi.org/10.47280/RevFacAgron(LUZ).v38.n4.15

AOAC (Association of Official Agricultural Chemists). Official methods of analysis of AOAC International. 21st ed., Rockville, MD, USA: AOAC; 2019. https://www.aoac.org/wp-content/uploads/2019/08/Front-Matter-List-of-Changes-2.pdf

Méndez-Martínez Y, García-Guerrero MU, Arcos-Ortega FG, Martínez-Córdova LR, Yamasaki-Granados S, Pérez-Rodríguez JC, et al. Effect of different ratios of dietary protein-energy on growth, body proximal composition, digestive enzyme activity, and hepatopancreas histology in Macrobrachium Americanum (Bate, 1868) prawn juveniles. Aquaculture. 2018; 485:1–11. https://doi.org/10.1016/j.aquaculture.2017.11.012

Vargas-Albores F, Guzman MA, Ochoa JL. A lipopolysaccharide binding agglutinin isolated from brown shrimp (Penaeus californiensis Holmes) haemolymph. Comp Biochem Physiol. 1993; 104:407-413. https://doi.org/10.1016/0305-0491(93)90387-K

Johansson M, Keyser P, Sritunyalucksana K, Söderhäll K. Crustacean haemocytes and haematopoiesis. Aquaculture. 2000; 191:45-52. https://doi.org/10.1016/S0044-8486(00)00418-X

Hauton C L. The use of the neutral red retention assay to examine the effects of temperature and salinity on haemocytes of the European flat oyster Ostrea edulis (L). Comp Biochem Physiol B, Biochem Mol Biol. 1998; 119(4):619–623. https://doi.org/10.1016/S0305-0491(98)00036-4

Chen H, Mai K, Zhang W, Liufu Z, Xu W, Tan B. Effects of dietary pyridoxine on immune responses in abalone, Haliotis discus hannai Ino. Fish Shellfish Immunol. 2005; 19(3):241–252. https://doi.org/10.1016/j.fsi.2004.12.006

Hagerman L. Haemocyanin concentration of juvenile lobsters (Homarus gammarus) in relation to moulting cycle and feeding conditions. Mar Biol. 1983; 17:11-17. https://doi.org/10.1007/BF00393205

Chen W, Cheng JC. Effects of pH, temperature and salinity on immune parameters of the freshwater prawn Macrobrachium rosenbergii. Fish Shellfish Immunol. 2000; 10: 387-391. https://doi.org/10.1006/fsim.2000.0264Ç

Jones CM, Valverde C. Development of Mass Production Hatchery Technology for the Redclaw Crayfish, Cherax quadricarinatus. Freshw Crayfish. 2020; 25(1):1–6. https://doi.org/10.5869/fc.2020.v25-1.001.

Gainza O, Romero J. Manano oligosacáridos como prebióticos en acuicultura de crustáceos. Lat Am J Aquat Res. 2017; 45(2):246-260 https://doi.org/10.3856/vol455-issue2-fulltext-2

Paul P, Rahman A, Ghosh A. Observation of probiotics effect on the growth, survival and production of giant freshwater prawn (Macrobrachium rosenbergii) in south-west part of Bangladesh. Int J Biosci. 2019; 14(3):45-53. http://dx.doi.org/10.12692/ijb/14.3.45-53

Pérez-Chabela ML, Alvarez-Cisneros YM, Soriano-Santos J, Pérez-Hernández MA. Los probióticos y sus metabolitos en la acuicultura. Una Revisión. Hidrobiológica. 2020; 30(1):93-105. https://doi.org/10.24275/uam/izt/dcbs/hidro/2020v30n1

Madani NSH, Adorian TJ, Ghafari-Farsani H, Hoseinifar SH. The effects of dietary probiotic Bacilli (Bacillus subtilis and Bacillus licheniformis) on growth performance, feed efficiency, body composition and immune parameters of whiteleg shrimp (Litopenaeus vannamei) postlarvae. Aquac Res. 2018; 49:1926-1933. https://doi.org/10.1111/are.13648

Zhao C, Zhu J, Hu J, Dong X, Sun L, Zhang X, et al. Effects of dietary Bacillus pumilus on growth performance, innate immunity and digestive enzymes of giant freshwater prawns (Macrobrachium rosenbergii). Aquac Nutr. 2019; 25(3):712-720. https://doi.org/10.1111/anu.12894

Valipour A, Nedaei S, Noori A, Asghar A, Hossein S. Dietary Lactobacillus plantarum affected on some immune parameters, air exposure stress response, intestinal microbiota, digestive enzyme activity and performance of narrow clawed crayfish (Astacus leptodactylus, Eschscholtz). Aquaculture. 2019; 504:121-130. https://doi.org/10.1016/j.aquaculture.2019.01.064

Azad MAK, Islam SS, Sithi IN, Ghosh AK, Banu GR, Bir J, et al. Effect of probiotics on immune competence of giant freshwater. prawn Macrobrachium rosenbergii. Aquac Res. 2018; 50(2):644-657. https://doi.org/10.1111/are.13942

Soberanes-Yepiz ML, Méndez-Martínez Y, García-Guerrero MU, Ascencio F, Violante-González J, García-Ibañez S, et al. Superoxide dismutase activity in tissues of juvenile cauque river prawn (Macrobrachium americanum Bate, 1868) fed with different levels of protein and lipid. Lat Am J Aquat Res. 2018; 46(3):543-550. https://doi.org/10.3856/vol46-issue3-fulltext-7

Ranjit-Kumar N, Prakash-Raman R, Jadhao SB, Kumar-Brahmchari R, Kumar K, Dash G. Effect of dietary supplementation of Bacillus licheniformis on gut microbiota, growth and immune response in giant freshwater prawn, Macrobrachium rosenbergii (de Man, 1879). Aquacult Int. 2013; 21:387-403. https://doi.org/10.1007/s10499-012-9567-8

Citado por