Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Composición proximal y perfil de ácidos grasos en larvas de Cotinis columbica Burmeister

Proximal composition and fatty acid profile in Cotinis columbica Burmeister larvae



Cómo citar
Fernández-Hernández, C. E. ., Gutiérrez-Tolentino, R. ., & Radilla-Vázquez, C. C. . (2023). Composición proximal y perfil de ácidos grasos en larvas de Cotinis columbica Burmeister . Revista MVZ Córdoba, 28(1), e2837. https://doi.org/10.21897/rmvz.2837

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Carlos Efrén Fernández-Hernández
Rey Gutiérrez-Tolentino
Claudia Cecilia Radilla-Vázquez

Carlos Efrén Fernández-Hernández,

Universidad Internacional Iberoamericana. Calle 15 #36 entre 10 y 12, col. IMI III, 24560, San Francisco de Campeche, Campeche, México.


Rey Gutiérrez-Tolentino,

Universidad Autónoma Metropolitana Unidad Xochimilco. División de Ciencias Biológicas y de la Salud. Departamento de Producción Agrícola y Animal. Calzada del Hueso 1100, col. Villa Quietud, Coyoacán, 04960, CDMX, México.


Claudia Cecilia Radilla-Vázquez,

Universidad Autónoma Metropolitana Unidad Xochimilco. División de Ciencias Biológicas y de la Salud. Departamento de Atención a la Salud. Calzada del Hueso 1100, col. Villa Quietud, Coyoacán, 04960, CDMX, México.


Objetivo. Determinar la composición proximal y perfil de ácidos grasos (AG) en larva de Cotinis columbica Burmeister colectada en los municipios de Mogotes y Garzón, Bogotá, Colombia. Materiales y métodos. Se colectaron seis muestras de larva C. columbica Burmeister durante tres meses, proveniente de los municipios de Mogotes y Garzón, Bogotá, Colombia (3 meses x 2 = 6). Las muestras fueron sometidas a análisis químico proximal y análisis de AG por cromatografía de gases con detector de ionización de flama y columna capilar. Resultados. En mogotes se encontraron 21.2 y 23.3% de grasa y proteína respectivamente, mientras que en Garzón se tuvieron valores de 31.1 y 25.9%, no hubo diferencia estadística (p≥0.05). Los análisis cromatográficos determinaron 18 AG, desde el C4:0 hasta el C22:2, c13,16. La prueba t de Student arrojó significancia (p<0.05) sólo en C10:0; a través del tiempo (mayo, junio y julio) los valores fueron más altos en larvas de Garzón. Los contenidos de grupos de ÁG saturados, monoinsaturados y poliinsaturados estuvieron entre 30.20 y 36.92 (% p/p). Conclusiones. La composición proximal y el perfil de ácidos grasos fueron similares, excepto para C10:0, en la grasa de larvas Cotinis columbica Burmeister provenientes de Mogotes y Garzón, Colombia.


Visitas del artículo 269 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Nowakowski AC, Miller AC, Miller ME, Xiao H, Wu X. Potential health benefits of edible insects. Crit Rev Food Sci Nutr. 2022; 62(13):3499-3508. https://doi.org/10.1080/10408398.2020.1867053
  2. Kolawkoski BM, Johaniuk K, Zhang H, Yamamoto E. Analysis of microbilogical and chemical hazards in edible insects available to canadian consumers. J Food Prot. 2021; 84(9):1575-1581. https://doi.org/10.4315/JFP-21-099
  3. Grisales MCM, López MFJ. Análisis composicional de la pupa de gusano de seda (Bombyx mori L.). BSSA. 2020; 18(2):127-134. https://doi.org/10.18684/BSAA(18)126-134
  4. Henry M, Gasco L, Piccolo G, Foun-Toulaki E. Review on the use of insects in the diet of farmed fish: Past and future. Anim Feed Sci Technol. 2016; 203(1):1-22. https://doi.org/10.1016/j.anifeedsci.2015.03.001
  5. Rodríguez OA, Pino MJM, Ángeles CSC, García PÁ, Barrón YRM, Callejas HJ. Valor nutritivo de larvas y pupas de gusano de seda (Bombyx mori) (Lepidoptera: Bombycidae). Rev Colomb Entomol. 2016; 42(1):69-74. https://doi.org/10.25100/socolen.v42i1.6672
  6. Vieria AA, Sanjinez AEJ, Linzmeier AM, Lima CCA, Rodrigues MML. Chemical composition and food potential of Pachymerus nucleorum larvae parasitizing Acrocomia aculeata Kernels. Plos One. 2016; 31:1-9. https://doi.org/10.1371/journal.pone.0152125
  7. Sancho AD, Landívar VD, Sarabia GD, Álvarez GMJ. Caracterización del extracto graso de larvas de Rhynchophorus palmarum L. Ciencia y Tecnología de Alimentos. 2015; 25(2):39-44.
  8. https://www.revcitecal.iiia.edu.cu/revista/index.php/RCTA/article/view/288
  9. Lautenschläger T, Neinhuis C, Kikongo E, Henle T, Förster A. Impact of different preparations on the nutritional value of the edible caterpillar Imbrasia epimethea from northern Angola. Eur Food Res Technol. 2017; 243:769-778. https://doi.org/10.1007/s00217-016-2791-0
  10. Barroso FG, Sánchez MMJ, Segura M, Morote E, Torres A, Ramos Rebeca, et al. Insects as food: Enrichment of larvae of Hermetia illucens with omega 3 fatty acids by means of dietary modifications. J Food Compost Anal. 2017; 62:8-13. https://doi.org/10.1016/j.jfca.2017.04.008
  11. Duarte S, Limao J, Barros G, Bandarra NM, Roseiro LC, Goncalves H, et al. Nutritional and chemical composition of different life stages of Triboleum castaneum (Herbst). J Stored Prod Res. 2021; 93:1-6. https://doi.org/10.1016/j.jspr.2021.101826
  12. Gasca-Álvarez HJ, Deloya C, Cultid-Medina CA, Pinilla-Buitrago G. Synopsis and potential geographical distribution of Cotinis (Coleoptera: Scarabaeidae: Cetoniinai: Gymnetini) in Colombia. Trop Zool. 2018; 31(3):99-117. https://doi.org/10.1080/03946975.2018.1462994
  13. Aguilera DS, Fernández LRS, Álvarez MJG, Sarabia DPG, Pico JPP. Los saberes ancestrales en el desarrollo local. Las larvas de Rhynchophorus palmarum l. Como recurso alimentario de los pueblos amazónicos. Revista Amazónica: Ciencia y Tecnología. 2017; 6(1):35-44. https://www.uea.edu.ec/revistas/index.php/racyt/article/view/74/78
  14. Collazos-González SA, Zuluaga-Carrero J, Cortés-Herrera JO. Aves del cañón del Chicamocha, Colombia: un llamado para su conservación. Biota Colombiana. 2020; 21(1):58-85. https://doi.org/10.21068/c2020.v21n01a05
  15. Valbuena-Villarreal RD, Gualtero-Leal DM. Aquatic macroinvertebrates (Animalia invertebrata) of the area of influence of El Quimbo Hydroelectric Station Huila, Colombia. Bol Cient Mus Hist Nat. 2021; 25(1):15-31. DOI:10.17151/bccm.2021.25.1.1
  16. Barkelaar, D. Insects for food and feed. EDN. 2017; 137:1-9. http://edn.link/insects4foodfeed
  17. Cruz-Labama JD, Crosby-Galván MM, Delgado-Alvarado A, Alcantara-Carbajal JL, Cuca-García JM, Tarango-Arámbula LM. Nutritional content of Liometopum apiculatom Mayr larvae (“escamoles”) by vegetation type in north-central Mexico. J Asia Pac Entomol. 2018; 21:1239-1245. https://doi.org/10.1016/j.aspen.2018.09.008
  18. Mintah BK, He R, Agyekum AA, Dabbour M, Golly MK, Ma H. Edible insect protein for food application: Extraction, composition, and functional properties. J Food Process Eng. 2019; 43:1-12. https://doi.org/10.1111/jfpe.13362
  19. Kulma M, Kourimská L, Homolkova D, Bozik M, Plachý V, Vrabec V. Effect of developmental stage on the nutritional value of edible insects. A case study with Blaberus craniifer and Zophobas morio. J. Food Compost Anal. 2020; 92:1-8. https://doi.org/10.1016/j.jfca.2020.103570
  20. Grabowski NT, Chhay T, Keo S, Lertpatarakomol R, Kajaysri K, Kang K, Miech P, Plötz M, Mitchaothai T. Proximate composition of Thai and Cambodian ready-to-eat insects. J Food Qual. 2021; 2021:1-6. https://doi.org/10.1155/2021/9731464
  21. Séré A, Bougma A, Raoul BBS, Traoré E, Parkouda Ch, Gnankiné O, Nestor BIH. Chemical composition, energy and nutritional values, digestibility and functional properties of deffated flour, protein concentrates and isolated from Carbula marginella (Hemiptera: Pentatomidae) and Cirina butyrosperme (Lepidoptera: Saturniidae). BMC Chem. 2021; 15(46):1-11. https://doi.org/10.1186/s13065-021-00772-z
  22. AOCS. The American Oil Chemists´ Society. Fatty acid composition by GLC, cis, cis and trans isomers. Method Ce 1c-89, 1995.
  23. Hlogwagne ZT, Slotow R, Munyai TC. Nutritional composition of edible insects consumed in Africa: A systematic review. Nutrients. 2020; 12(2786):1-28. https://doi.org/10.3390/nu12092786
  24. Markiewicz-Keszicka M, Czyzak-Runowska G, Lipinska P, Wojtowski J. Fatty acid profile of milk – A review. Bull Vet Inst Pulawy. 2013; 57(2):135-139. https://doi.org/10.2478/bvip-2013-0026
  25. Dos Santos OV, Sodré DPC, Dias SS, Vieira DCLR, Teixeira CBE. Artisanal oil obtained from insect´s larvae (Speciomerus ruficornis): fatty acids composition, physicochemical, nutritional and antioxidant properties for application in food. Eur Food Res Technol. 2021; 247:1803-1813. https://doi.org/10.1007/s00217-021-03752-8
  26. Maceda SJC, Chañi PLO. Larva de Rhynchophorus palmarum L. (Coleoptera curculionidae): Efecto de la dieta en la síntesis de ácidos grasos esenciales. Revista Verde. 2021; 16(2):120-130. https://doi.org/10.18378/rvads.v16i2.8258
  27. Nikkhah A, Van Haute S, Jovanovic V, Jung H, Dewulf J, Cirkovic VT, et al. Life cycle assessment of edible insects (Protaetia brevitarsis seulensis larvae) as a future protein and fat source. Nature. 2021; 11:1-11. https://doi.org/10.1038/s41598-021-93284-8
  28. Balta I, Stef L, Pet I, Iancu T, Stef D, Corcionivoschi N. Essential fatty acids as biomedicines in cardiac health. Biomedicines. 2021; 9(1466):1-24. https://doi.org/10.3390/biomedicines9101466
  29. Kesek M, Szulc T, Zielak SA. Genetic, physiological and nutritive factors affecting the fatty acid profile in cows´ milk - a review. Anim Sci Pap Rep. 2014; 32(2):95-105. https://www.researchgate.net/publication/275962424
  30. Rodríguez-Alcalá LM, Castro-Gómez MP, Pimentel LL, Fontecha J. Milk fat components with potential anticancer activity – a review. Biosci Rep. 2017; 37:1-18. https://doi.org/10.1042/BSR20170705

Sistema OJS 3.4.0.3 - Metabiblioteca |