Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Gonadotropina coriónica equina (eCG) y gen GDF9 en el comportamiento reproductivo de ovejas raza Katahdin

Equine chorionic gonadotropin (eCG) and GDF9 gene on the reproductive performance of Katahdin sheep



Cómo citar
Sánchez-Ramos, R., Hernández-Marín, J. A., Ortiz-Salazar, J. A., Olmos-Oropeza, G., & Cortez-Romero, C. (2022). Gonadotropina coriónica equina (eCG) y gen GDF9 en el comportamiento reproductivo de ovejas raza Katahdin. Revista MVZ Córdoba, 27(s), e2888. https://doi.org/10.21897/rmvz.2888

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Reyna Sánchez-Ramos
José Antonio Hernández-Marín
Jorge Alberto Ortiz-Salazar
Genaro Olmos-Oropeza
Cesar Cortez-Romero

Reyna Sánchez-Ramos,

Recursos Genéticos y Productividad – Ganadería. Campus Montecillo, 56230, Estado de México, México

Colegio de Postgraduados, Recursos Genéticos y Productividad- Ganadería. Campus Montecillo, 56230, Estado de México, México.


José Antonio Hernández-Marín,

Universidad de Guanajuato, Departamento de Veterinaria y Zootecnia, División de Ciencias de la Vida. Campus Irapuato-Salamanca, 36824, Irapuato, Guanajuato, México.


Jorge Alberto Ortiz-Salazar,

Universidad Autónoma Chapingo. Unidad Regional Universitaria de Zonas Áridas, 35230, Bermejillo, Durango, México.


Genaro Olmos-Oropeza,

Colegio de Postgraduados, Innovación en Manejo de Recursos Naturales. Campus San Luis Potosí, 78600, Salinas de Hidalgo, San Luis Potosí, México.


Cesar Cortez-Romero,

1. Colegio de Postgraduados, Recursos Genéticos y Productividad- Ganadería. Campus Montecillo, 56230, Estado de México, México. 2. Colegio de Postgraduados, Innovación en Manejo de Recursos Naturales. Campus San Luis Potosí, 78600, Salinas de Hidalgo, San Luis Potosí, México.


Objetivo. Determinar la influencia de la aplicación de gonadotropina coriónica equina (eCG) y la presencia del exón 2 del gen GDF9 en variables reproductivas en ovejas de la raza Katahdin en época de transición. Materiales y métodos. Se utilizaron 63 ovejas con edad y peso promedio de 2.83±0.89 años y 45.32±5.44 kg, respectivamente. Se usó un arreglo factorial 2x2 bajo un diseño completamente al azar, donde los factores y niveles fueron: la ausencia o presencia del exón 2 del gen GDF9 y la aplicación o no de la hormona eCG en el protocolo de sincronización. Resultados. La aplicación de eCG mostró un efecto significativo favorable en el comportamiento reproductivo de las ovejas, no así para la presencia del exón 2 del gen GDF9. Los tratamientos T2 y T4 fueron superiores en las variables % de gestación, % de parición, fecundidad y prolificidad con respecto a T1 y T3. La mejor respuesta reproductiva se obtuvo con la aplicación de eCG independiente de la presencia o ausencia del gen. Conclusiones. Este estudio muestra evidencia de la nula interacción del exón 2 del gen GDF9 y la eCG para mejorar el rendimiento reproductivo de ovejas. Se recomienda la aplicación de eCG en protocolos de sincronización de estros para ovejas de la raza Kathadin en época de transición. Frente a los pocos reportes genómicos en la raza, se muestra evidencia de la necesidad para realizar otras investigaciones de las variantes genéticas y su relación con la reproducción en ovejas.


Visitas del artículo 183 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Bobadilla-Soto EE, Salas-Razo G, Padillas-Flores JP, Perea-Peña M. Unit displacement of sheep production in Mexico by effect of imports. Int J Dev Res. 2015; 5(2):3607-3612. http://www.journalijdr.com/unit-displacement-ofsheep-production-mexico-effect-imports
  2. Hernández-Marín JA, Valencia-Posadas M, Ruíz-Nieto JE, Mireles-Arriaga AI, Cortez-Romero C, Gallegos-Sánchez J. Contribución de la ovinocultura al sector pecuario en México. Agro productividad. 2017; 10(3):87-93 https://revista-agroproductividad.org/index.php/agroproductividad/article/view/975/833
  3. Lucio R, Sesento L, Bedolla JLC, Cruz AR. Parámetros genéticos para pie de cría en ovinos de la raza katahdin Genetic parameters for breeading stock in sheep of katahdin race. Rev Csc Nat & Agrop. 2018; 5(16):1-5. https://www.ecorfan.org/bolivia/researchjournals/Ciencias_Naturales_y_Agropecuarias/vol5num16/Revista_de_Ciencias_Naturales_y_Agropecuarias_V5_N16_1.pdf
  4. González-Reyna A, Martínez-González JC, Hernández-Meléndez J, Lucero-Magaña FA, Castillo-Rodríguez SP, Vásquez-Armijo, et al. Reproducción de ovinos de pelo en regiones tropicales de México. Ciencia Agropecuaria 2020; (31):182-199. http://www.revistacienciaagropecuaria.ac.pa/index.php/ciencia-agropecuaria/article/view/309/248
  5. Hameed N, Khan MIUR, Zubair M, Andrabi SMH. Approaches of estrous synchronization in sheep: developments during the last two decades - a review. Trop Anim Health Prod. 2021; 53(5):1-10. https://doi.org/10.1007/s11250-021-02932-8
  6. López J, Salinas D, Baracaldo-Martínez A, Gómez C, Herrera-Ibatá D, Atuesta-Bustos JE. Efecto de la dosis de gonadotropina coriónica equina (eCG) asociada a protocolos cortos de sincronización de celo sobre el desempeño reproductivo de ovejas de pelo. Rev Investig Vet Perú. 2021; 32(1). https://dx.doi.org/10.15381/rivep.v32i1.17775
  7. Di Berardino C, Peserico A, Capacchietti G, Crociati M, Monaci M, Tosi U, et al. Equine Chorionic Gonadotropin as an Effective FSH Replacement for In Vitro Ovine Follicle and Oocyte Development. Int J Mol Scs. 2021; 22(22):12422. https://doi.org/10.3390/ijms222212422
  8. Hashem NM, El-Azrak KM, Nour El-Din AN, Taha TA, Salem MH. Effect of GnRH treatment on ovarian activity and reproductive performance of low-prolific Rahmani ewes. Theriogenology. 2015 Jan 15;83(2):192-8. https://doi.org/10.1016/j.theriogenology.2014.09.016
  9. Gebreselassie G, Berihulay H, Jiang L, Ma Y. Review on Genomic Regions and Candidate Genes Associated with Economically Important Production and Reproduction Traits in Sheep (Ovies aries). Animals. 2019; 10(1):33. https://doi.org/10.3390/ani10010033
  10. Chay-Canul AJ, García-Herrera RA, Magaña-Monforte JG, Macias-Cruz U, Luna-Palomera C. Productividad de ovejas Pelibuey y Katahdin en el trópico húmedo. Recursos Agropecuarios. 2019; 6(16):159-65. https://doi.org/10.19136/era.a6n16.1872
  11. Ibrahim AHM. Genetic variants of the BMP2 and GDF9 genes and their associations with reproductive performance traits in Barki ewes. Small Rumin Res. 2021; 195:106302. https://doi.org/10.1016/j.smallrumres.2020.106302
  12. Hanrahan JP, Gregan SM, Mulsant P, Mullen M, Davis GH, Powell R, et al. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol Reprod. 2004; 70(1):900–909. https://doi.org/10.1095/biolreprod.103.023093
  13. De Castro FC, Cruz MHC, Leal CLV. Role of Growth differentiation factor 9 and bone morphogenetic protein 15 in ovarian function and their importance in mammalian female fertility - A review. Asian-Australasian J Anim Sci. 2016; 29(8):1065–1074. https://doi.org/10.5713/ajas.15.0797
  14. Tang J, Hu W, Di R, Wang X, Zhang X, Zhang J, et al. Expression analysis of BMPR1B, BMP15, and GDF9 in prolific and non-prolific sheep breeds during the follicular phase. Czech J Anim Sci. 2019; 64(11):439-447. https://doi.org/10.17221/101/2018-cjas
  15. Strauss JF, Williams CJ. Ovarian Life Cycle. In: Yen and Jaffe’s 9 a edition. Reproductive Endocrinology. 2019; https://doi.org/10.1016/B978-0-323-47912-7.00008-1
  16. Juengel JL, Davis GH, McNatty KP. Using sheep lines with mutations in single genes to better understand ovarian function. Reproduction 2013; 146(4):111–123. https://doi.org/10.1530/REP-12-0509
  17. Nicol L, Bishop SC, Pong-Wong R, Bendixen C, Holm LE, Rhind SM, McNeilly AS. Homozygosity for a single base-pair mutation in the oocyte-specific GDF9 gene results in sterility in Thoka sheep. Reproduction. 2009; 138(6):921–933. https://doi.org/10.1530/REP-09-0193
  18. Souza CJH, McNeilly AS, Benavides MV, Melo EO, Moraes JCF. Mutation in the protease cleavage site of GDF9 increases ovulation rate and litter size in heterozygous ewes and causes infertility in homozygous ewes. Anim Genet. 2014; 45(5):732–739. https://doi.org/10.1111/age.12190
  19. Våge DI, Husdal M, Kent MP, Klemetsdal G, Boman IA. A missense mutation in growth differentiation factor 9 (GDF9) is strongly associated with litter size in sheep. BMC Genet. 2013; 14(1):1. https://doi.org/10.1186/1471-2156-14-1
  20. Mullen MP, Hanrahan JP. Direct evidence on the contribution of a missense mutation in GDF9 to variation in ovulation rate of Finnsheep. PLoS One. 2014; 9(4). https://doi.org/10.1371/journal.pone.0095251
  21. Silva BDM, Castro E A, Souza CJH, Paiva SR, Sartori R, Franco M. et al. A new polymorphism in the Growth and Differentiation Factor 9 (GDF9) gene is associated with increased ovulation rate and prolificacy in homozygous sheep: New polymorphism in GDF9 and prolificacy. Animal Genetics. 2011; 42(1):89–92. https://doi.org/10.1111/j.1365-2052.2010.02078.x
  22. Muñoz-García C, Vaquera-Huerta H, Gallegos-Sánchez J, Becerril-Pérez CM, Tarango-Arámbula LA, Bravo-Vinaja Á. et al. Influence of FecGE mutation on the reproductive variables of Pelibuey ewes in the anestrus period. Trop Anim Health Prod. 2021; 53(2):328. https://doi.org/10.1007/s11250-021-02755-7
  23. García E. Modificaciones al sistema de clasificación climática de Köppen: para adaptarlo a las condiciones de la República Mexicana - 5ta Edición. Instituto de Geografía: UNAM México, Méx. 2004. http://www.publicaciones.igg.unam.mx/index.php/ig/catalog/view/83/82/251-1
  24. SMN (Servicio Meteorológico Nacional). Información Estadística Climatológica de México por estado. 2022. https://smn.conagua.gob.mx/es/climatologia/informacion-climatologica/informacion-estadistica-climatologica
  25. Phythian CJ, Michalopoulou E, Duncan JS. Assessing the Validity of Animal-Based Indicators of Sheep Health and Welfare: Do Observers Agree? Agriculture 2019; 9(5):88. https://doi.org/10.3390/agriculture9050088
  26. NRC: National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids. The National Academies Press. Washington, D.C. 2007. https://doi.org/10.17226/11654.
  27. Norma Oficial Mexicana NOM-062-ZOO-1999, Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. Diario Oficial de La Federación. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca, y Alimentación (SAGARPA): México; 2001. https://www.gob.mx/cms/uploads/attachment/file/203498/NOM-062-ZOO-1999_220801.pdf
  28. COLPOS: Colegio de Postgraduados. Reglamento para el uso y cuidado de animales destinados a la investigación en el Colegio de Postgraduados. Dirección de Investigación: Colegio de Posgraduados, México; 2019. http://www.colpos.mx/wb_pdf/norma_interna/reglamento_usoycuidadoanimales_050819.pdf
  29. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Austria; 2021. https://www.R-project.org/.
  30. de Mendiburu F. agricolae: Statistical Procedures for Agricultural Research. R package version 1.3-5. 2021. https://CRAN.R-project.org/package=agricolae
  31. Therneau TM, Grambsch PM. Modeling Survival Data: Extending the Cox Model. Springer, New York; 2000. https://doi.org/10.1007/978-1-4757-3294-8_3
  32. Kassambara A, Kosinski, M, Biecek, P. survminer: Drawing Survival Curves using 'ggplot2'. R package version 0.4.9. 2021. https://CRAN.R-project.org/package=survminer
  33. Wang F, Chu M, Pan L, Wang X, He X, Zhang R, et al. Polymorphism detection of GDF9 gene and its association with litter size in Luzhong mutton sheep (Ovis aries). Animals (Basel). 2021; 11(2):571. https://doi.org/10.3390/ani11020571
  34. Pinto PHN, Balaro MFA, Souza-Fabjan JMG, Ribeiro L dos S, Bragança G M, et al. Anti-Müllerian hormone and antral follicle count are more effective for selecting ewes with good potential for in vivo embryo production than the presence of FecGE mutation or eCG pre-selection tests. Theriogenology. 2018; 113:146–152. https://doi.org/10.1016/j.theriogenology.2018.02.018
  35. Chen H, Liu C, Jiang H, Gao Y, Xu M, Wang J, et al. Regulatory Role of miRNA-375 in expression of BMP15/GDF9 receptors and its effect on proliferation and apoptosis of bovine cumulus cells. Cell Physiol Biochem. 2017; 41:439-450. https://doi.org/10.1159/000456597
  36. Liu C, Yuan B, Chen H, Xu M, Sun X, Xu J, et al. Effects of MiR-375-BMPR2 as a key factor downstream of BMP15/GDF9 on the Smad1/5/8 and Smad2/3 signaling pathways. Cell Physiol Biochem. 2018; 46:213-225. https://doi.org/10.1159/000488424
  37. Martinez-Ros P, Astiz S, Garcia-Rosello E, Rios-Abellan A, & Gonzalez-Bulnes A. Effects of short-term intravaginal progestagens on the onset and features of estrus, preovulatory LH surge and ovulation in sheep. Anim reprod sci. 2018; 197:317-323. https://doi.org/10.1016/j.anireprosci.2018.08.046
  38. Bruno-Galarraga M, Cueto M, Gibbons A, Pereyra-Bonnet F, Subiabre M, González-Bulnes A, Preselection of high and low ovulatory responders in sheep multiple ovulation and embryo transfer programs. Theriogenology. 2015; 84(5):784-790. https://doi.org/10.1016/j.theriogenology.2015.05.011
  39. Luna-Palomera C, Macías-Cruz U, Sánchez-Dávila F. Respuesta superovulatoria y calidad embrionaria en ovejas Katahdin tratadas con FSH o FSH más eCG fuera de la época reproductiva. Trop Animal Health Prod. 2019; 51:1289-1288. https://doi.org/10.1007/s11250-019-01801-9
  40. Habibizad J, Riasi A, Kohram H, Rahmani HR. Effect of long-term supplementation of high energy or high energy-protein diets on ovarian follicles and blood metabolites and hormones in ewes. Small Ruminant Res. 2015; 132:37-43. https://doi.org/10.1016/j.smallrumres.2015.10.004
  41. Luna-Palomera C, Berumen-Alatorre AC, Aguilar-Cabrales JA, Cansino GR. Fertilidad en ovejas de pelo complementadas con harina de almendra de palma africana. Livest Res Rural Dev. 2010; 22:1–7. http://www.lrrd.org/lrrd22/10/luna22178.htm
  42. Scaramuzzi RJ, Campbell BK, Downing JA, et al. A review of the effects of supplementary nutrition in the ewe on the concentrations of reproductive and metabolic hormones and the mechanisms that regulate folliculogenesis and ovulation rate. Reprod Nutr Dev. 2006; 46(4):339-354. https://doi.org/10.1051/rnd:2006016
  43. Sotgiu FD, Porcu C, Pasciu V, Dattena M, Gallus M, Argiolas G, et al. Towards a sustainable reproduction management of dairy sheep: Glycerol-Based formulations as alternative to eCG in milked ewes mated at the end of anoestrus period. Animals. 2021; 11(4):922. https://doi.org/10.3390/ani11040922
  44. O'Callaghan D, Yaakub H, Hyttel P, Spicer L J, & Boland M P. Effect of nutrition and superovulation on oocyte morphology, follicular fluid composition and systemic hormone concentrations in ewes. J Reprod Fertil. 2000; 118(2):303–313. https://pubmed.ncbi.nlm.nih.gov/10864794/
  45. Ahmad Pampori Z, Ahmad Sheikh A, Aarif O, Hasin D, Ahmad Bhat, I. Physiology of reproductive seasonality in sheep–an update. Biol. Rhythm Res. 2020; 51(4):586-598. https://doi.org/10.1080/09291016.2018.1548112
  46. Gastélum-Delgado MA, Avendaño-Reyes L, Álvarez-Valenzuela FD, Correa-Calderón A, Meza-Herrera CA, Mellado M, et al. Comportamiento de estro circanual en ovejas Pelibuey bajo condiciones áridas del Noroeste de México. Rev Mex Cienc Pec. 2015; 6:109–118. https://www.redalyc.org/pdf/2656/265633002002.pdf
  47. Macías-Cruz U, Sánchez-Estrada TJ, Gastelum-Delgado MA, Avendaño-Reyes L, Correa-Calderón A, Álvarez-Valenzuela FD, et al. Actividad reproductiva estacional de ovejas Pelibuey bajo condiciones áridas de México. Arch Med Vet. 2015; 47(3):381-386. https://dx.doi.org/10.4067/S0301-732X2015000300016
  48. Hinojosa-Cuéllar JA, Oliva-Hernández J, Torres-Hernández G. "Productive performance of F-1 Pelibuey x Blackbelly lambs and crosses with Dorper and Katahdin in a production system in the humid tropic of Tabasco, Mexico. Arch Med Vet. 2013; 45(2):135-143. http://dx.doi.org/10.4067/S0301-732X2013000200004
  49. Plakkot B, Mohanan A, & Kanakkaparambil R. Prolificacy in small ruminants. J Dairy Vet Anim. 2020; 9(3):85-90. http://dx.doi.org/10.15406/jdvar.2020.09.00284
  50. Ivanova T, Stoikova-Grigorova R, Bozhilova-Sakova M, Ignatova M, Dimitrova I, Koutev V. Phenotypic and genetic characteristics of fecundity in sheep. A review. Bulg J Agric Sci. 2021; 27(5):1002-1008.
  51. Ajafar MH, Kadhim AH, & AL-Thuwaini TM. The Reproductive Traits of Sheep and Their Influencing Factors. Rev Agric Sci. 2022; 10:82-89. https://doi.org/10.7831/ras.10.0_82

Sistema OJS 3.4.0.3 - Metabiblioteca |