Uso de Levaduras Activas en Nutrición de Camarón

##plugins.themes.bootstrap3.article.main##

Gabriel Aguirre-Guzman
Ángel I. Campa-Cordova
Jaime Salinas-Chavira
Resumen

La acuacultura de camarón es una industria que usa harina de pescado en las dietas, el cual es un ingrediente difícil de obtener a bajo costo y es cada vez más escaso. Es importante encontrar estrategias que ayuden a la nutrición del camarón mediante el uso de ingredientes alternativos que reemplacen o complementen a la harina de pescado y ayuden a desarrollar una industria más amigable para el medio ambiente. Las levaduras se pueden añadir a las dietas para los organismos acuáticos y son un producto microbiano generado por sistemas biotecnológicos o un subproducto de las industrias agroalimentarias. Este estudio determinó el uso potencial de levaduras activas (Candida insectorum, C. parapsilosis, C. sake, C. utilis, Debaryomyces hansenii, Rhodosporidium paludigenum, Saccharomyces cerevisiae, Schizosaccharomyces pombe, y Yarrowia lipolytica) en camarones juveniles y postlarvas de Litopenaeus schmitt, Fenneropenaeus indicus y L. vannamei. Los resultados muestran que las levaduras activas pueden ser empleadas a diferentes dosis como un sustituto parcial de la harina de pescado y/o harina de soya e incorporarse a dietas de camarones juveniles o usarse directamente en dietas para postlarvas. Sin embargo, es necesario realizar estudios que determinen las estrategias más eficientes para que la levadura activa sea ingerida por el camarón.

Palabras clave

Descargas

Los datos de descargas todavía no están disponibles.

##plugins.themes.bootstrap3.article.details##

Referencias / Ver

FAO. El estado mundial de la pesca y la acuacultura 2020. La sostenibilidad en acción. Roma; 2020. https://doi.org/10.4060/ca9229es

Arreguín-Sánchez F, Arcos-Huitrón E. Fishing in Mexico: state of exploitation and use of ecosystems. Hidrobiológica. 2011; 21(3):431-462.

Perez-Castañeda R, Sánchez-Martinez JG, Aguirre-Guzman G, Rabago-Castro JL, Vazquez-Sauceda ML. Interaction of fisheries and aquaculture in the production of marine resources: advances and perspectives in Mexico. Finkl CW, Makowski C. (eds.). Environmental Management and Governance: Advances in Coastal and Marine Resources, Coastal Research Library 8, Springer International Publishing Switzerland; 2014. https://doi.org/10.1007/978-3-319-06305-8_5

Pahlow M, Oel PRV, Mekkonen MM, Hoekstra AY. Increasing pressure on freshwater resources due to terrestrial feed ingredients for aquaculture production. Sci Total Environ. 2015; 536:847-857. https://doi.org/10.1016/j.scitotenv.2015.07.124

Jin M, Xiong J, Zhou Q, Yuan Y, Wang X, et al. Dietary yeast hydrolysate and brewer’s yeast supplementation could enhance growth performance, innate immunity capacity and ammonia nitrogen stress resistance ability of Pacific white shrimp (Litopenaeus vannamei). Fish Shellfish Immunol. 2018; 82:121-129. https://doi.org/10.1016/j.fsi.2018.08.020

Guo J, Qiu X, Salze G, Davis DA. Use of high-protein brewer’s yeast products in practical diets for the Pacific white shrimp Litopenaeus vannamei. Aquac Nut. 2019; 25(6):680-690. https://doi.org/10.1111/anu.12889

Ayiku S, Shen J, Tan BP, Dong X-H, Liu H-Y. Effects of reducing dietary fishmeal with yeast supplementations on Litopenaeus vannamei growth, immune response and disease resistance against Vibrio harveyi. Microbiol Res. 2020; 239:126554. https://doi.org/10.1016/j.micres.2020.126554

Ceseña CE, Vega-Villasante F, Aguirre-Guzman G, Luna-González A, Campa-Córdova AI. Update on the use of yeast in shrimp aquaculture: a minireview. Int Aquat Res. 2021; 13:1-16 https://doi.org/10.22034/IAR.2021.1904524.1066

Zhao L, Wang W, Huang X, Guo T, Wen W, et al. The effect of replacement of fishmeal by yeast extract on the digestibility, growth and muscle composition of the shrimp Litopenaeus vannamei. Aqua Res. 2017; 48(1):311-320. https://doi.org/10.1111/are.12883

Qiu X, Nguyen L, Davis DA. Apparent digestibility of animal, plant and microbial ingredients for Pacific white shrimp Litopenaeus vannamei. Aquac Nut. 2018; 24(3):930–939. https://doi.org/10.1111/anu.12629

Zheng L, Xie S, Zhuang Z, Liu Y, Tian L, et al. Effects of yeast and yeast extract on growth performance, antioxidant ability and intestinal microbiota of juvenile Pacific white shrimp (Litopenaeus vannamei). Aquac. 2021; 530:735941. https://doi.org/10.1016/j.aquaculture.2020.735941

Boekhout T, Amend AS, Baidouri FE, Gabaldón T, Geml J, et al. Trends in yeast diversity Discovery. Fungal Diversity. 2022; 114:491–537. https://doi.org/10.1007/s13225-021-00494-6

Sarkar A, Bhaskara-Rao KV. Marine yeast: a potential candidate for biotechnological applications- a review. Asian J Microbiol Biotechnol Environ Sci. 2016; 18(3):627-634.

Gamboa-Delgado J, Fernández-Díaz B, Nieto-López M, Cruz-Suárez LE. Nutritional contribution of torula yeast and fishmeal to the growth of shrimp Litopenaeus vannamei as indicated by natural nitrogen stable isotopes. Aquac. 2016; 453(20):116–121. https://doi.org/10.1016/j.aquaculture.2015.11.026

Álvarez-Sánchez AR, Nolasco-Soria H, Peña-Rodríguez A., Mejía-Ruíz H. In vitro digestibility of Yarrowia lipolytica yeast and growth performance in whiteleg shrimp Litopenaeus vannamei. Turk J Fish Aquat Sci. 2018; 18(3):395-404. https://doi.org/10.4194/1303-2712-v18_3_05

Biswas G, Korenaga H, Nagamine R, Kono T, Shimokawa H, et al. Immune stimulant effects of a nucleotide-rich baker’s yeast extract in the kuruma shrimp, Marsupenaeus japonicus. Aquac. 2012; 366–367:40–45. https://doi.org/10.1016/j.aquaculture.2012.09.001

Babu DT, Antony SP, Joseph SP, Bright AR, Philip R. Marine yeast Candida aquaetextoris S527 as a potential immunostimulant in black tiger shrimp Penaeus monodon. J Inverte Pathol. 2013; 112(3):243–252. https://doi.org/10.1016/j.jip.2012.12.002

Sajeevan TP, Philip R, Singh IB. Dose/frequency: a critical factor in the administration of glucan as immunostimulant to Indian white shrimp Fenneropenaeus indicus. Aquac. 2009a; 287(3-4):248–252. https://doi.org/10.1016/j.aquaculture.2008.10.045

Sajeevan TP, Lowman DW, Williams DL, Selven S, Anas A, et al. Marine yeast diet confers better protection than its cell wall component (1-3)-β-D-glucan as an immunostimulant in Fenneropenaeus indicus. Aqua Res. 2009; 40(15):1723-1730. https://doi.org/10.1111/j.1365-2109.2009.02275.x

Deng D, Mei C, Mai K, Tan BP, Ai Q, et al. Effects of a yeast-based additive on growth and immune responses of white shrimp, Litopenaeus vannamei (Boone, 1931) and aquaculture environment. Aquac Res. 2013; 44(9):1348–1357. https://doi.org/10.1111/j.1365-2109.2012.03139.x

Bai N, Gu M, Zhang W, Xu W, Mai K. Effects of β-glucan derivatives on the immunity of white shrimp Litopenaeus vannamei and its resistance against white spot syndrome virus infection. Aquac. 2014; 426-427:66–73. https://doi.org/10.1016/j.aquaculture.2014.01.019

Sang HM, Kien NT, Thanh NT. Effects of dietary mannan oligosaccharide on growth, survival, physiological, immunological and gut morphological conditions of black tiger prawn (Penaeus monodon Fabricius 1798). Aquacult Nutr. 2014; 20(3):341–348. https://doi.org/10.1111/anu.12083

Neto HS, Nunes AJP. Performance and immunological resistance of Litopenaeus vannamei fed a β-1, 3/1, 6-glucan supplemented diet after per os challenge with the infectious myonecrosis virus (IMNV). Rev Bas Zootec. 2015; 44(5):165–173. https://doi.org/10.1590/S1806-92902015000500001

Wilson W, Lowman D, Antony SP., Puthumana J, Singh IS, et al. Immune gene expression profile of Penaeus monodon in response to marine yeast glucan application and white spot syndrome virus challenge. Fish Shellfish Immunol. 2015; 43(6):346-356. https://doi.org/10.1016/j.fsi.2014.12.032

Gyan WR, Ayiku S, Yang Q, Asumah J. Effects of yeast antimicrobial peptide in aquaculture. J Fish Aquac Dev. 2019; 6:1048 https://doi.org/10.29011/2577- 1493.101048

Sarlin PJ, Philip R. Efficacy of marine yeasts and baker´s yeast as immunostimulant in Fenneropenaeus indicus: A comparative study. Aquac. 2011; 321:173-178. https://doi.org/10.1016/j.aquaculture.2011.08.039

Swathi J, Narendra K, Sowjanya KM, Satya AK. Marine fungal metabolites as a rich source of bioactive compounds. Afr J Biochem Res. 2013; 7(10):184-196. https://doi.org/10.5897/AJBR12.068

Øverland M, Skrede A. Yeast derived from lignocellulosic biomass as a sustainable feed resource for use in aquaculture. J Sci Food Agric. 2016; 97(3):733-742. https://doi.org/10.1002/jsfa.8007

Hommel RK. Candida introduction. Batt CA, Tortorello ML (ed) Encyclopedia of Food Microbiology (Second Edition). Academic Press; 2014. https://doi.org/10.1016/B978-0-12-384730-0.00055-0

García-Galano T, Carrillo-Farnés O. Nutrition of the white shrimp, Litopenaeus schmitti Burkenroad: 25 years of scientific investigation. Rev Invest Mar. 2015; 35(2):24-40. http://hdl.handle.net/1834/9076

Apún-Molina JP, Santamaría-Miranda A, Luna-González A, Ibarra-Gámez JC., Medina-Alcantar V, et al. Growth and metabolic responses of whiteleg shrimp Litopenaeus vannamei and Nile tilapia Oreochromis niloticus in polyculture fed with potential probiotic microorganisms on different schedules. Lat Am J Aquat Res. 2015; 43(3):435-445. https://doi.org/10.3856/vol43-issue3-fulltext-5

Sarlin PJ, Philip R. Marine yeasts as feed supplement for Indian white prawn Fenneropenaeus indicus: screening and testing the efficacy. Int J Curr Microbiol Appl Sci. 2016; 5(1):55-70. https://doi.org/10.20546/ijcmas.2016.501.005

Pham D, Ansquer D., Chevalier A, Dauga C, Peyramale A, et al. Selection and characterization of potential probiotic bacteria for Litopenaeus stylirostris shrimp hatcheries in New Caledonia. Aquac. 2014; 432:475–482. https://doi.org/10.1016/j.aquaculture.2014.04.031

Campa-Córdova AI, Morales-Cristobal Y, Guzmán-Murillo MA, Aguirre-Guzman G. Productive response and circulating haemocytes in juvenile shrimp Litopenaeus vannamei, fed with probiotic mixtures. Revista de Biología Marina y Oceanografía. 2020; 55(1) 73-78 htps://doi.org/https://doi.org/10.22370/rbmo.2020.55.1.2394

Vidya G, Vinusha B, Vijaya Ch. Efficacy of the marine yeast Debaryomyces hansenii on growth of the shrimp Litopenaeus vannamei. Int J Res Appl Sci Eng Technol. 2017; 5(IX):1545-1547. https://doi.org/10.22214/ijraset.2017.9225

Yang SP, Wu ZH, Jian J., Zhang XZ. Effect of marine red yeast Rhodosporidium paludigenum on growth and antioxidant competence of Litopenaeus vannamei. Aquac. 2010; 309(1-4):62–65. https://doi.org/10.1016/j.aquaculture.2010.09.032

Achupallas JM Zhou Y., Davis DA. Pond production of Pacific white shrimp, Litopenaeus vannamei, fed grain distillers dried yeast. Aquac Nut. 2016; 22:1222–1229. https://doi.org/10.1111/anu.12359

Achupallas JM, Zhou Y, Davis DA. Use of grain distillers dried yeast in practical diets for juvenile pacific white shrimp, Litopenaeus vannamei. J World Aquac Soc. 2016; 47(2):220-229 https://doi.org/10.1111/jwas.12267

Sharawy Z, Goda AMAS, Hassaan MS. Partial or total replacement of fishmeal by solid state fermented soybean meal with Saccharomyces cerevisiae in diets for Indian prawn shrimp, Fenneropenaeus indicus, postlarvae. Anim Feed Sci Technol. 2016; 212:90–99. https://doi.org/10.1016/j.anifeedsci.2015.12.009

Qiu X, Davis DA. Evaluation of flash dried yeast as a nutritional supplement in plant-based practical diets for Pacific white shrimp Litopenaeus vannamei. Aquac Nutr. 2017; 23:1244–1253. https://doi.org/10.1111/anu.12499

Qiu X. Alternative ingredients in practical diets for Pacific white shrimp (Litopenaeus vannamei). [Doctoral thesis of Fisheries and Allied Aquacultures], Alabama, Unites States of America: Auburn University; 2017. http://hdl.handle.net/10415/5729

Wrent P, Rivas EM, Gil de Prado E, Peinado JM, de Silóniz MI. Debaryomyces. In: Batt CA, Tortorello ML (ed) Encyclopedia of Food Microbiology (Second Edition). Academic Press; 2014. https://doi.org/10.1016/B978-0-12-384730-0.00081-1

Sampaio JP. Rhodosporidium. In: Kurtzman CP, Fell JW, Boekhout T. (ed). The yeast, a taxonomy study. Elsevier Science; 2011. https://doi.org/10.1016/B978-0-444-52149-1.00127-0

Alsammar H, Delneri D. An update on the diversity, ecology and biogeography of the Saccharomyces genus. FEMS Yeast Res. 2020; 20(3):foaa013 https://doi.org/10.1093/femsyr/foaa013

Wasielesky W, Atwood H, Stokes A, Browdy CL. Effect of natural Emerenciano MGC, Rombenso AN, Vieira FDN, Martins MA, Coman GJ et al. Intensification of penaeid shrimp culture: an applied review of advances in production systems, nutrition and breeding. Anim. 2022; 12:236-275. https://doi.org/ 10.3390/ani12030236

BryschHerzberg M, GuoSong J, Seidel M, Assali I, LiLin D. Insights into the ecology of Schizosaccharomyces species in natural and artificial habitats. Antonie van Leeuwenhoek. 2022; 115:661–695. https://doi.org/10.1007/s10482-022-01720-0

Solorzano-Reyes F, Velásquez-López PC. Absorption efficiency in post-larvae of the shrimp Litopenaeus vannamei fed a diet of marine yeast from mangrove mudflats. Bul Mar Coast Res. 2021; 50(2):73-90. https://doi.org/10.25268/bimc.invemar.2021.50.2.1012

Sutherland JB, Cornelison C, Crow SA. CANDIDA, Yarrowia lipolytica (Candida lipolytica). In: Batt CA, Tortorello ML (ed) Encyclopedia of Food Microbiology (Second Edition). Academic Press; 2014. https://doi.org/10.1016/B978-0-12-384730-0.00056-2

Patsios SA Dedousi A., Sossidou EN, Zdragas A. Sustainable animal feed protein through the cultivation of Yarrowia lipolytica on agro-industrial wastes and by-products. Review. MDPI Sustainability. 2020; 12(4):1398. https://doi.org/10.3390/su12041398

Guardiola FA, Esteban MA, Angulo C. Yarrowia lipolytica, health benefits for animals. Appl Microbiol Biotechnol. 2021; 105(20):7577-7592. https://doi.org/10.1007/s00253-021-11584-5

Méndez-Martínez Y, Yamasaki-Granados S García-Guerrero MU, Martinez-Cordova LR. Effect of dietary protein content on growth rate, survival and body composition of juvenile cauque river prawn, Macrobrachium americanum (Bate, 1868). Aquac Res. 2017; 48:741-751. https://doi.org/10.1111/are.13193

Guo J, Guo B, Zhang H, Xu W, Zhang W, et al. Effects of nucleotides on growth performance, immune response, disease resistance and intestinal morphology in shrimp Litopenaeus vannamei fed with a low fishmeal diet. Aquac Int, 2016; 24(4):1007–1023. https://doi.org/10.1007/s10499-015-9967-7

Citado por

Artículos más leídos del mismo autor/a