El Genoma bovino, métodos y resultados de su análisis

Contenido principal del artículo


Janeth Ortega Luís García


El conocimiento del genoma de especies domésticas ha permitido la selección de características importantes para la producción y la aplicación de técnicas moleculares en mejoramiento genético. El objetivo de esta revisión fue presentar la metodología que se utilizó para el secuenciamiento del genoma bovino, describir la estructura molecular y presentar los principales hallazgos de este proyecto. Se describen las principales herramientas y metodologías utilizadas para el secuenciamiento del genoma, la naturaleza molecular y las perspectivas que de este conocimiento surgen para el desarrollo de la medicina veterinaria y la producción animal. Se resalta la importancia del uso de estas estrategias de estudio para comparaciones evolutivas y la búsqueda de genes bovinos para características importantes de producción y loci de características cuantitativas (QTLs). Se incluyen los genes anotados a la fecha, la sintenia entre especies, al igual que los cromosomas bovinos mejor descritos. Finalmente se resumen las perspectivas de utilización de este conocimiento en el campo de la producción y conocimiento del genoma bovino, las repercusiones en el estudio comparativo entre razas y el mejoramiento genético de las especies.

Palabras clave:

Detalles del artículo


1. Sanger F, Thompson EOP. The amide group of insulin. Biochem J 1955; 59:509-514. http://dx.doi.org/10.1042/bj0590509

2. Stahmann MA, Hueber CF, Link KP. Studies of the hemorrhagic sweet clover disease. V. Identifications and synthesis of the hemorrhagic agent. J Biol Chem 1941;138:513-517.

3. Collip JB. The extraction of parathyroid hormone which will prevent of control parathyroid tetany and which regulates the level of blood calcium. J Biol Chem 1925; 63:395-438.

4. Fevold HL, Hisaw FL, Leonard SL. The gonad stimulating and the luteinizing hormones of the anterior lobe of the hypophesis. Am J Physiol 1931; 97:291-301.

5. Wiltbank JN,Ingalls JE and Rowden WW. Effects of various forms and levels of estrogens alone or in combinations with gonadotrophins on the estrous cycle of beef heifers. J Animal Sci 1961a; 20:341-352.

6. Events H and Long JA. The effect of the anterior lobe of the hypophysis administered intraperitoneally on growth, maturity and estrous cycles of the rat. Anat Rec 1921; 21:61-63.

7. Foote RH. The history of artificial insemination Selected notes and notables. J Anim Sci 2002;80:1-10.

8. Ruvinsky Fries R. The Genetics of the Cattle. Cataloging in publication Data. United Kingdom. CAB International Library of Congress 1999.

9. The Bovine Genome sequencing and Analysis Consortium, Elsik Christine G, Tellam Ross L, Worley Kim C. The Genome Sequence of Taurine Cattle: A Window to Ruminant Biology and Evolution. Science 2009;324:522-527. http://dx.doi.org/10.1126/science.1169588

10. Snelling W. and 53 authors for the International Bovine BAC Mapping Consortium. A physical map of the genome. Genome Biol 2007; 8:165. http://dx.doi.org/10.1186/gb-2007-8-8-r165

11. Dekkers JCM. Commercial application of marker-and gene-assisted selection in livestock: Strategies and lessons. Journal of Animal Science 2004; 82:313-328.

12. Cox DR, Burmeister M, Price ER, Kim S, and Myers RM . Radiation hybrid mapping: a somatic cell genetic method for constructing high-resolution maps of mammalian chromosomes. Science 1990; 250:245-250. http://dx.doi.org/10.1126/science.2218528

13. Baumann JGJ, Wiegant J, Borst P, Van Duijn P. A new method for fluorescence microscopical localization of specific DNA sequences by in situ hybridization of fluorochrome-labeled RNA. Exp Cell Res 1980: 138:485–490.

14. Levin B. Genes. 8a ed. New York: Oxford University Press; 2003.

15. Montgomery Slatkin. Linkage disequilibrium understanding the evolutionary past and mapping the medical future. Nat Rev Genet 2008; 9:477. http://dx.doi.org/10.1038/nrg2361

16. Vallejo RL, Li YL, Rogers GW, Ashwell MS. Genetic diversity and background linkage disequilibrium in the North American Holstein cattle population. J Anim Sci 2003; 81(3):617-623. http://dx.doi.org/10.3168/jds.s0022-0302(03)74028-4

17. McKay SD, Schanbel R, Murdoch B, Matukumalli L, Aerts J, Caoppieters W, Crews D, Dias Neto E, Gill C, Gao Ch, Mannen H, , Stothard P, Wang Z, Van Tessell C, Williams J, Taylor J and Moores S. Whole genome linkage disequilibrium maps in cattle. BMC Genet 2007; 8:74-87. http://dx.doi.org/10.1186/1471-2156-8-74

18. Gibson G, Muse VS. A primer of Genome Science. (MA): Sinauer Sunderland; 2002.

19. Sánchez CA, Bueno M. Introgresión genética de bos indicus (bovidae) en bovinos criollos colombianos de origen bos taurus. Acta Biológica Colombiana 2008; 13(1):131-142.

20. Mark R Band, Joshua H. Larson, Mark Rebeiz, Cheryl A Green, D Wayne Heyen, Jena Donovan, Ryan Windish, Chad Steining, et al. An Ordered Comparative Map of the Cattle and Human Genomes. Genome Res 2000; 10:1359–1368. http://dx.doi.org/10.1101/gr.145900

21. Guizar-Vázquez, Jesús. Genética Clínica. Diagnóstico y manejo de las enfermedades hereditarias. México, D.F: Manual Moderno 2001.

22. Feng-Jie Sun, Sophie Fleurdépine, Cécile Bousquet-Antonelli, Gustavo Caetano-Anollés and Jean-Marc Deragon. Common Evolutionary trends for SINE RNA structures. Trends Genet 2007; 23(1):26-33. http://dx.doi.org/10.1016/j.tig.2006.11.005

23. Pech M, Streeck RE, and Zachau HG. Patchwork structure of a bovine satellite DNA. Cell 1979; 18:883-893 http://dx.doi.org/10.1016/0092-8674(79)90140-5

24. Silja Kostia. Genomic Evolution and Diversity in Artiodactyla. Academic Dissertation in Genetics, Helsinski: Department of Biosciences, Division of Genetics, University of Helsinki; 2000.

25. Duncan CH. Novel Alu type repeat in Artiodactyls. Nucleic Acids Res 1987; 15:1340 http://dx.doi.org/10.1093/nar/15.3.1340

26. Alexander LJ, Rohrer GA, Stone RT, and Beattie CW Porcine SINE associated microsatellite markers: evidence for new artiodactyl SINEs. Mamm Genome 1995; 6:464-468. http://dx.doi.org/10.1007/BF00360655

27. Pepin LAU, Lepingle A, Berthier JL, Bensaid A, and Vaiman. Sequences conservation of microsatellites between bos taurus (cattle), Capra hircus (goat) and related species. Examples of use in parentage testing and phylogeny analysis. Heredity 1995; 74:53-61.

28. Corneo G, Ginelli E, and. Polli E. A satellite DNA isolated from human tissues. J Mol Biol 1967; 23:619-622. http://dx.doi.org/10.1016/S0022-2836(67)80130-X

29. Charlesworth B, Sniegowski P., and Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 1994; 371:215-220. http://dx.doi.org/10.1038/371215a0

30. Jobse C, Buntjer JB ,Haagsma N, Breukelman HJ, Beintema JJ and Lenstra JA. Evolution and recombination of bovine DNA regions. J Mol Evol 1995; 41:277-283. http://dx.doi.org/10.1007/BF00186539

31. Goldstein D, and Schlötterer Christian. Microsatellites. Evolution and Application New York: Oxford University Press; 1999.

32. Pimentel de Mello L, Tambasco-Talhari D, Lehmann Coutinho AL, De Almeida Regitano LC. Genetic characterization of Aberdeen Angus cattle using molecular markers. Genet Mol Biol 2003; 26(2):133-137. http://dx.doi.org/10.1590/S1415-47572003000200005

33. Sanz A, Uffo O, Miranda I, Martínez S. Empleo de los microsatélites para determinar paternidad en bovinos criollos. Revista Salud Animal 2002; 24(3):166-169.

34. Shriver MD, Jin L, Boerwinkle E, Deka R, Ferrell RE, and Chakraborty R. A novel measure of genetic distance for highly polymorphic tandas repeat loci. Mol Biol Evol 1995; 12(5):914-920.

35. Teberlet P, Griffin S, GooseensB, et al. Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res 1996; 24:3189-3194. http://dx.doi.org/10.1093/nar/24.16.3189

36. Chung M.Y, Ranum PW, Duvick LA,. Servandio A, Zoghbi HJ, and Orr HT. Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebral ataxia type I. Nat Genet 1993; 5:254-258. http://dx.doi.org/10.1038/ng1193-254

37. Larson G, Dobney K, Albarella U, et al. Worldwide phylogeography of Wild Boar reveals multiple centers of pig domestication. Science 2005; 11(307):1617-1621. http://dx.doi.org/10.1126/science.1106927

38. Sharoflou Mohammad Reza and Moran Chris. Conservation within Artiodactyls of an AATA interrupt in the IGF I microsatellite for 19-35 Million years. Mol Biol Evol 2000;17:665-669. http://dx.doi.org/10.1093/oxfordjournals.molbev.a026345

39. FAO. Commision on Genetic Resourses for food and agriculture. Working Group on Animal genetics Resources for food and agriculture. Rome: Third Session; 2004.

40. Egito Andréa A, Albuquerque Maria do Socorro, D Almeida Leonardo, Grattapaglia Dario. Microsatellite based genetic diversity and relationships among ten Creole and commercial cattle breeds raised in Brazil. BMC Genet 2007; 8:83. http://dx.doi.org/10.1186/1471-2156-8-83

41. Li WH and Dan G. Fundamentals of molecular evolution. Sunderland: Sinauer Associates, Inc; 1991.

42. Grisart B, Farnir LJRK, Cambisano N, Kim JJ, Kvasz A, Mni M, Simon P, Frére JM, Coppieters W and Georges M. Genetic and functional confirmations of the casualty of the DGAT1 K23A quantitative trait nucleotide in affecting milk yield and composition. Proc Natl Acad Sci USA 2004; 101(8):2398-2403. http://dx.doi.org/10.1073/pnas.0308518100

43. Sasaki S, and Shimokawa H. The amelogenin gene. Int J Dev Biol 1995; 39:127-133.

44. Vieira Meirelles Flavio. Desenvolvimiento de Marcadores Moleculares para Determinacao da origen sexual e racial de Productos Cárneos [Tese Doutorado]. Pisausunanga, Brasil: Faculdade de Zooctenia e Engeharia de Alimentos; 2005.

45. Grober L, Matin LJR, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoberlin A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, George M. A deletions in the bovine myostatin gene causes the double- muscled phenotype in cattle. Nat Genet 1997; 17:71-74. http://dx.doi.org/10.1038/ng0997-71

46. Killian JK, Nolan CM, Wyllie AA, Li T, Vu TH. Divergent evolution in M6p-IGF2R imprinting from the Jurassic to the Quaternary. Hum Mol Genet 2001; 10:1721-1728. http://dx.doi.org/10.1093/hmg/10.17.1721

47. Khabit H, Zaitoum Ismail and Kim Eui-Soo. Comparative analysis of sequence characteristics of imprinted genes in human, mouse and cattle. Mamm Genome 2007; 18:538-5 http://dx.doi.org/10.1007/s00335-007-9039-z

48. Hutter B, Helms V, Paulsen M. Tandas repeats in CpG island of imprinting genes. Genomics 2006; 88:323-332. http://dx.doi.org/10.1016/j.ygeno.2006.03.019

49. Curchoe C, Zhang S, Bin Y, Zhang X, Yang L, Feng D, O´Neill M, Tian XC. Promotor-Specific expression of the Imprinted IGF2 gen in cattle (bos taurus). Biol Reprod 2005; 73:1275-1281. http://dx.doi.org/10.1095/biolreprod.105.044727

50. Everts de Wind A, Kata Srinivas R, Band Mark R, Rebeiz Mark, Larkin Denis, Everts Robin E,et al. A 1463 gene Cattle- Human Comparative Map with Anchor Points defined by Human Genome Sequence Coordinates. Genome Res 2004; 14:1424-1437. http://dx.doi.org/10.1101/gr.2554404

51. Drögemüller C, Wöhlke Anne, Leeb Tosso and Disti Tomar. A 4 Mb high resolution BAC contig on bovine chromosome 1q12 and comparative analysis with human chromosome 21q22. Comp Funt Genom 2005; 6:194-203. http://dx.doi.org/10.1002/cfg.476

52. Aparna P, Thomas Schiex, Stephanie McKay, Brenda Murdodoch, Zhiquan Wang, James E. Womack, Paul Stothard and Stephen S Moore. High-resolution radiation hybrid maps of bovine chromosome 19 and 29: comparison with the bovine genome sequence assembly. BMC Genomics 2007; 8:310-315. http://dx.doi.org/10.1186/1471-2164-8-310


La descarga de datos todavía no está disponible.