Composición química de intestinos de pollos pre-secados con harinas vegetales: proteína alternativa para la acuicultura
##plugins.themes.bootstrap3.article.main##
Objetivo. Caracterizar la composición química de intestinos de pollos procesados con harinas vegetales (HV), como fuente alternativa de proteína para la acuicultura. Materiales y métodos. Los intestinos de pollos, molidos, cocidos y desgrasados (IPMCD), se mezclaron de forma individual con harinas vegetales (HV): polvo de arroz (PA), salvado de trigo (ST), harinas de palmiste (HPa), maíz (HM) y soya (HS), en proporciones (p:p): 80:20, 70:30, 60:40, 50:50 y 40:60 (IPMCD:HV), con 20 tratamientos y diseño completamente aleatorizado. Se evaluó materia seca, proteína cruda, lípidos, fibra, cenizas, energía bruta (MJ kg-1) y costos. Se aplicó análisis de componentes principales (PCA) para verificar la interacción entre proporciones. Resultados. Las mayores proporciones con IPMCD, incrementaron el contenido de proteína y lípidos (p<0.05) y redujeron el costo (p<0.05). Las mezclas con 50:50 y 40:60% (IPMCD:HV) mostraron mayores niveles de fibra y cenizas (p<0.05). Además, el empleó de HS en las mezclas, incrementó el porcentaje de proteína, energía y costos (p<0.05), efecto contrario con HPa que mostró los menores costos (p<0.05). Conclusiones. Las proporciones de IPMCD:HV alcanzaron altos niveles de materia seca, que facilitó el proceso de deshidratación. El contenido nutricional y costos de las mezclas, las acredita como posibles alimentos acuícolas, para reemplazar la proteína en las dietas, según la especie, fin productivo y requerimientos del mercado. El PCA con matriz de covarianza, sugiere que los tratamientos IPMCD:HS (80:20), IPMCD:HS (70:30) y IPMCD:HS (60:40) tienen mejores características nutricionales, aunque, IPMCD:HPa (80:20) mostró altos niveles de proteína y fue la más económica.
Descargas
##plugins.themes.bootstrap3.article.details##
Tacon AG. Trends in global aquaculture and aquafeed production: 2000–2017. Rev Fish Sci Aquac. 2020; 28(1):43-56. https://doi.org/10.1080/23308249.2019.1649634
National Research Council (NRC). Nutrient Requirements of Fish and Shrimp. The National Academies Press: Washington, D.C. USA; 2011. https://www.nap.edu/catalog/13039/nutrient-requirements-of-fish-and-shrimp
Fry JP, Mailloux NA, Love DC, Milli MC, Cao L. Feed conversion efficiency in aquaculture: do we measure it correctly?. Environ Res Lett. 2018; 13(2):024017. https://doi.org/10.1088/1748-9326/aaa273
Sánchez‐Muros MJ, Renteria P, Vizcaino A, Barroso FG. Innovative protein sources in shrimp (Litopenaeus vannamei) feeding. Rev Aquac. 2020; 12(1):186-203. https://doi.org/10.1111/raq.12312
Botello LA, Martínez YA, Viana MT, Ortega MO, Morán CM, Pérez KC, et al. Effect of palm kernel cake in the nutrition for tilapia fry (Oreochromis niloticus). Rev MVZ Córdoba. 2022; 27(2):e2527. https://doi.org/10.21897/rmvz.2527
Li L, Liu H, Zhang P. Effect of spirulina meal supplementation on growth performance and feed utilization in fish and shrimp: a meta-analysis. Aquac Nutr. 2022; 2022:1-15. https://doi.org/10.1155/2022/8517733
Pinto J, Boavida-Dias R, Matos HA, Azevedo J. Analysis of the Food Loss and Waste Valorisation of Animal By-Products from the Retail Sector. Sustainability. 2022; 14(5):2830. https://doi.org/10.3390/su14052830
Rocker MM, Lewis MJ, Mock TS, Francis DS, Bellagamba F, Moretti VM, et al. Poultry offal meal production conditions impact meal quality and digestibility in Atlantic salmon (Salmo salar). Aquaculture. 2021; 542(2021):736909. https://doi.org/10.1016/j.aquaculture.2021.736909
Kokoszyński D, Żochowska‐Kujawska J, Kotowicz M, Sobczak M, Piwczyński D, Stęczny K, et al. Carcass characteristics and selected meat quality traits from commercial broiler chickens of different origin. Anim Sci J. 2022; 93(1):e13709. https://doi.org/10.1111/asj.13709
Gaudioso G, Marzorati G, Faccenda F, Weil T, Lunelli F, Cardinaletti G, et al. Processed animal proteins from insect and poultry by-products in a fish meal-free diet for rainbow trout: Impact on intestinal microbiota and inflammatory markers. Int J Mol Sci. 2021; 22(11):5454. https://doi.org/10.3390/ijms22115454
Hassani SM, Banavreh A, Jourdehi YA, Mohseni M, Shokri MM, Rastekenari YH. The feasibility of partial replacement fish meal with poultry by‐products in practical diets of juvenile great sturgeon, Huso huso: Effects on growth performance, body composition, physiometabolic indices, digestibility and digestive enzymes. Aquac Res. 2021; 52(8):3605-3616. https://doi.org/10.1111/are.15205
Zinina O, Merenkova S, Galimov D. Optimization of microbial hydrolysis parameters of poultry by-products using probiotic microorganisms to obtain protein hydrolysates. Fermentation. 2021; 7(122):2-6. https://doi.org/10.3390/fermentacion7030122
Ozdemir S, Yetilmezsoy K. A mini literature review on sustainable management of poultry abattoir wastes. J Mater Cycles Waste. 2020; 22(1):11-21. https://doi.org/10.1007/s10163-019-00934-1
Campos I, Valente LM, Matos E, Marques P, Freire F. Life-cycle assessment of animal feed ingredients: Poultry fat, poultry by-product meal and hydrolyzed feather meal. J Clean Prod. 2020; 252(2020):119845. https://doi.org/10.1016/j.jclepro.2019.119845
Pérez-Corría K, Botello-León A, Mauro-Félix A, Rivera-Pineda F, Viana M, Cuello-Pérez M, et al. Chemical composition of earthworm (Eisenia foetida) co-dried with vegetable meals as an animal feed. Rev Ciencia y Agricultura. 2019; 16(2):79-92. https://doi.org/10.19053/01228420.v16.n2.2019.9130
Bitencourt BS, Corrêa JL, Carvalho GR, Augusto PE. Valorization of Pineapple Pomace for Food or Feed: Effects of Pre-treatment with Ethanol on Convective Drying and Quality Properties. Waste Biomass Valorization. 2022; 13(2020):2253-2266. https://doi.org/10.1007/s12649-021-01659-9
Saucier L, M’ballou C, Ratti C, Deschamps MH, Lebeuf Y, Vandenberg GW. Comparison of black soldier fly larvae pre-treatments and drying techniques on the microbial load and physico-chemical characteristics. J. Insects Food Feed. 2022; 8(1):45-64. https://doi.org/10.3920/JIFF2021.0002
Botello AL, Martínez YA, Cotera MB, Morán CM, Ortega MO, Pérez KC, et al. Growth performance, carcass traits and economic response of broiler fed of palm kernel meal (Elaeis guineensis). Cuba J Agric Sci. 2020; 54(4):1-12. http://cjascience.com/index.php/CJAS/article/view/986
Badar IH, Jaspal MH, Yar MK, Ijaz M, Khalique A, Zhang L, et al. Effect of strain and slaughter age on production performance, meat quality and processing characteristics of broilers reared under tropical climatic conditions. Europ Poult Sci. 2021; 85(2021):1-17. https://doi.org/10.1399/eps.2021.326
Badillo-Zapata D, Zaragoza FDJ, Vega-Villasante F, López-Huerta JM, Herrera-Resendiz S, Cueto-Cortés L, et al. 2018. Requerimiento de proteína y lípidos para el crecimiento de juveniles del pez nativo Dormitator latifrons (Richardson, 1844). Ecosist Recur Agropec. 2018; 5(14):345-351. https://doi.org/10.19136/era.a5nl4.1554
AOAC. Official Methods of Analysis of AOAC International. 19th edition. Gaithersburg, Maryland, USA: AOAC International; 2012.
Tacon A. Standard Methods for the Nutrition and Feeding of Farmed Fish and Shrimp. Washington: Argent Laboratories Press; 1990.
Botello AL, María TV, Téllez ET, Pullés EA, Cisneros MV, Gutberto SS, et al. Fish meal substitution by protein sugar cane in diets for weight gain in red tilapia. Agrociencia. 2011; 45(1):23-31.
Méndez-Martínez Y, Gucić M, Martínez-Córdova L, Civera-Cerecedo R, Ricque-Marie D, Cortés-Jacinto E. Dry matter, protein and energy digestibility of diets for juvenile Pacific whiteleg shrimp (Litopenaeus vannamei) reared at different salinities. Cienc Rural. 2021; 51(8):1-10. https://doi.org/10.1590/0103-8478cr20190636
Burger TG, Singh I, Mayfield C, Baumert JL, Zhang Y. The impact of spray drying conditions on the physicochemical and emulsification properties of pea protein isolate. LWT-Food Sci Technol. 2022; 153(2022):112495. https://doi.org/10.1016/j.lwt.2021.112495
Kaur L, Mao B, Beniwal AS, Kaur R, Chian FM, Singh J. Alternative proteins vs animal proteins: The influence of structure and processing on their gastro-small intestinal digestion. Trends Food Sci Tech. 2022; 122(2022):275-286. https://doi.org/10.1016/j.tifs.2022.02.021
Kim TK, Yong HI, Cha JY, Park SY, Jung S, Choi YS. Drying-induced restructured jerky analog developed using a combination of edible insect protein and textured vegetable protein. Food Chem. 2022; 373(2022):131519. https://doi.org/10.1016/j.foodchem.2021.131519
Vidotti RM, Carneiro DJ, Viegas E. Growth Rate of Pacu, Piaractus mesopotamicus, Fingerlings Fed Diets Containing Co-Dried Fish Silage as Replacement of Fish Meal. J Appl Aquac. 2002; 12(4):77-88. https://doi.org/10.1300/J028v12n04_07
Goddard JS, Perret JS. Co-Drying Fish Silage for Use in Aquafeeds. Anim Feed Sci Tech. 2005; 118(3):337-342. https://doi.org/10.1016/j.anifeedsci.2004.11.004
Norozi M, Rezaei M, Kazemifard M. Effect of different acid processing methodologies on the nutritional value and reduction of anti‐nutrients in soybean meal. J Food Process Preserv. 2022; 46(e16205):1-8. https://doi.org/10.1111/jfpp.16205
Santos FS, Signoretti RD, Oliveira JS, Silva GT, Rufino MD, Souza CG, et al. Effect of replacing soybean meal with peanut meal on milk production and fat composition in lactating dairy cows. Trop Anim Health Prod. 2022; 54(1):1-7. https://doi.org/10.1007/s11250-022-03091-0
Carvalho GG, Vieira AJ, Mattos C, Ferreira F, Aparecida BM Silagem de resíduo de peixes em dietas para alevinos de tilápia do nilo. R Bras Zootec. 2006; 35(1):126-130.
Li X, Zheng S, Cheng K, Ma X, Wu G. Use of alternative protein sources for fishmeal replacement in the diet of largemouth bass (Micropterus salmoides). Part II: effects of supplementation with methionine or taurine on growth, feed utilization, and health. Amino Acids. 2021; 53(1):49-62. https://doi.org/10.1007/s00726-020-02922-4
Maas RM, Verdegem MC, Wiegertjes GF, Schrama JW. Carbohydrate utilisation by tilapia: a meta‐analytical approach. Rev Aquacult. 2020; 12(2020):1851-1866. https://doi.org/10.1111/raq.1241
Chen JX, Feng JY, Zhu J, Luo L, Lin SM, Wang DS, et al. Starch to protein ratios in practical diets for genetically improved farmed Nile tilapia Oreochromis niloticus: Effects on growth, body composition, peripheral glucose metabolism and glucose tolerance. Aquaculture. 2020; 515(2020):734538. https://doi.org/10.1016/j.aquaculture.2019.734538
Konnert GD, Martin E, Gerrits WJ, Gussekloo SW, Masagounder K, Mas-Muñoz J, et al. Interactive effects of protein and energy intake on nutrient partitioning and growth in Nile tilapia. Animal. 2022; 16(4):100494. https://doi.org/10.1016/j.animal.2022.100494
Valdivié NM, Martínez AY, Mesa FO, Botello LA, Betancur HC, Velázquez MB. Review of Moringa oleifera as forage meal (leaves plus stems) intended for the feeding of non-ruminant animals. Anim Feed Sci Tech. 2020; 260(2020):1-9. https://doi.org/10.1016/j.anifeedsci.2019.114338
Toledo-Solís FJ, Martinez-Garcia R, Galaviz MA, Hilerio-Ruiz AG, Alvarez-González CA, de Rodrigáñez MS. Protein and lipid requirements of three-spot cichlid Cichlasoma trimaculatum larvae. Fish Physiol Biochem. 2020; 46:23-37. https://doi.org/10.1007/s10695-019-00692-9
Liou CH, To VA, Zhang ZF, Lin YH. The effect of dietary lecithin and lipid levels on the growth performance, body composition, hemolymph parameters, immune responses, body texture, and gene expression of juvenile white shrimp (Litopenaeus vannamei). Aquaculture. 2023; 567(2023):739260. https://doi.org/10.1016/j.aquaculture.2023.739260
Méndez-Martínez Y, García-Guerrero MU, Arcos-Ortega FG, Martínez-Córdova LR, Yamasaki-Granados S, Pérez-Rodríguez JC, et al. Effect of different ratios of dietary protein-energy on growth, body proximal composition, digestive enzyme activity, and hepatopancreas histology in Macrobrachium americanum (Bate, 1868) prawn juveniles. Aquaculture. 2018; 485(2018):1-11. https://doi.org/10.1016/j.aquaculture.2017.11.012