Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Efectos de la temperatura y la concentración de presas vivas en la larvicultura de Colossoma macropomum

Effects of temperature and live prey concentration on Colossoma macropomum larviculture



Cómo citar
Costa dos Santos, F. A. ., Soares da Costa Julio, G., de Sena Souza, A. ., Cortezzi Pedras, P. P. ., & Kennedy-Luz, R. . (2024). Efectos de la temperatura y la concentración de presas vivas en la larvicultura de Colossoma macropomum. Revista MVZ Córdoba, 29(1), e3195. https://doi.org/10.21897/rmvz.3195

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Fabio Aremil Costa dos Santos
Gustavo Soares da Costa Julio
André de Sena Souza
Pedro Paulo Cortezzi Pedras
Ronald Kennedy-Luz

Fabio Aremil Costa dos Santos,

Universidad Federal de Minas Gerais (UFMG), Departamento de zootecnia, Laboratorio de Acuicultura, Belo Horizonte, Minas Gerais, Brasil.


Gustavo Soares da Costa Julio,

Universidad Federal de Minas Gerais (UFMG), Departamento de zootecnia, Laboratorio de Acuicultura, Belo Horizonte, Minas Gerais, Brasil.


André de Sena Souza,

Universidad Federal de Minas Gerais (UFMG), Departamento de zootecnia, Laboratorio de Acuicultura, Belo Horizonte, Minas Gerais, Brasil.


Pedro Paulo Cortezzi Pedras,

Universidad Federal de Minas Gerais (UFMG), Departamento de zootecnia, Laboratorio de Acuicultura, Belo Horizonte, Minas Gerais, Brasil.


Ronald Kennedy-Luz,

Universidad Federal de Minas Gerais (UFMG), Departamento de zootecnia, Laboratorio de Acuicultura, Belo Horizonte, Minas Gerais, Brasil.


Objetivo. El estudio evaluó el rendimiento y la supervivencia de larvas de Colossoma macropomum a diferentes temperaturas y concentraciones de presa. Materiales y métodos. Se utilizaron dos temperaturas (28 y 32ºC) y dos concentraciones diarias iniciales (500 y 1.000 nauplios de artemia por larva) de presa. Estas concentraciones se incrementaron cada 5 días durante los primeros 15 días de cultivo. Del día 16 al 30, las larvas recibieron exclusivamente una dieta comercial. Resultados. En los primeros 7 días, el peso (W), la longitud total (LT) y la tasa de crecimiento específica diaria (SGR) fueron mayores para tratamientos T32 (p<0.05). Después de 15 días, W, TL y SGR fueron mayores para P1000 (p<0.05). Después de 22 días, W y TL sufrieron el efecto de la concentración inicial de presas y la temperatura del agua con valores más altos para P1000 y T32 (p<0.05). Al final de los 30 días de cultivo, W se vio afectado solo por la temperatura del agua con valores más altos para T32 (p<0.05). La TL mostró efecto de la temperatura y concentración inicial de presas con valores superiores para P1000 y T32 (p<0.05). Durante la alimentación con dieta comercial (días 16-30 de cultivo), la supervivencia fue mayor para T32 (94.38±6.12%) (p<0.05), sin diferencia para la concentración inicial de presas. Conclusiones. Se concluye que la larvicultura de C. macropomum debe realizarse con temperatura de 32° C y el manejo alimentario debe ser diferenciado durante los primeros 15 días, influido positivamente en el periodo de alimentación con ración.


Visitas del artículo 65 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Sebesta R, Kucharczyk D, Nowosad J, Sikora M, Stejskal V. Effect of temperature on growth and survival of maraena whitefish Coregonus maraena (Bloch 1779) larvae in controlled conditions. Aqua Res. 2018; 49:3151–3157. https://doi.org/10.1111/are.13778
  2. Brett JR, Groves TDD. Physiological energetics. Fish Phys. 1979; 8(6):280-352.
  3. Gadomski DM, Caddell SM. Effects of temperature on early-life-history stages of California halibut Paralichthys californicus. Fish Bull. 1991; 89(4):567-576. https://pubs.er.usgs.gov/publication/70180738
  4. Keckeis H, Kamler E, Bauer-Nemeschkal E, Schneeweiss K. Survival, development and food energy partitioning of nase larvae and early juveniles at different temperatures. Jour Fish Biol. 2001; 59: 45–61. https://doi.org/10.1006/jfbi.2001.1596
  5. Hansen TK, Falk-Petersen IB. Growth and survival of first-feeding spotted wolffish (Anarhichas minor Olafsen) at various temperature regimes. Aquac Res. 2002; 33:1119–1127. https://doi.org/10.1046/j.1365-2109.2002.00756.x
  6. Rijnsdorp AD, Peck MA, Engelhard GH, Möllmann C, Pinnegar JK. Resolving the effect of climate change on fish populations. J Mar Sci. 2009; 66:1570–1583. https://doi.org/10.1093/icesjms/fsp056
  7. Costa DP, de Oliveira Paes Leme F, Takata R, Costa DC, Souza e Silva W, Melillo Filho R, Alves GM, Luz RK. Effects of temperature on growth, survival and physiological parameters in juveniles of Lophiosilurus alexandri, a carnivorous neotropical catfish. Aquac Res. 2016; 47:1706–1715. https://doi.org/10.1111/are.12594
  8. Barros IBA, Villacorta-Correa MA, Carvalho TB. Stocking density and water temperature as modulators of aggressiveness, survival and zootechnical performance in matrinxã larvae, Brycon amazonicus. Aquaculture 2019; 502, 378-383. https://doi.org/10.1016/j.aquaculture.2018.12.070
  9. Yamamoto T, Shima T, Furuita H, Sugita T, Suzuki N. Effects of feeding time, water temperature, feeding frequency and dietary composition on apparent nutrient digestibility in rainbow trout Oncorhynchus mykiss and common carp Cyprinus carpio. Fish Scie. 2007; 73:161–170. https://doi.org/10.1111/j.1444-2906.2007.01314.x
  10. Bogevik AS, Henderson RJ, Mundheim H, Waagbø R, Tocher DR, Olsen RE. The influence of temperature on the apparent lipid digestibility in Atlantic salmon (Salmo salar) fed Calanus finmarchicus oil at two dietary levels. Aquaculture. 2010; 309:143–151. https://doi.org/10.1016/j.aquaculture.2010.08.016
  11. Handeland SO, Imsland AK, Stefansson SO. The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts. Aquaculture. 2008; 283:36–42. https://doi.org/10.1016/j.aquaculture.2008.06.042
  12. Takata R, Nakayama CL, Silva W, Bazzoli NS, Luz RK. The effect of water temperature on muscle cellularity and gill tissue of larval and juvenile Lophiosilurus alexandri, a Neotropical freshwater fish. J Therm Biol. 2018; 76:80–88. https://doi.org/10.1016/j.jtherbio.2018.07.007
  13. Santos JCE, Luz RK. Effect of salinity and prey concentrations on Pseudoplatystoma corruscans, Prochilodus costatus and Lophiosilurus alexandri larviculture. Aquaculture. 2009; 287:324–328. https://doi.org/10.1016/j.aquaculture.2008.10.014
  14. Hearth S, Atapaththu SKSS. Sudden weaming of Angel fish Pterophyllum Scalare (Lichtenstein) (Pisces: Cichlidae) larvae brine shrimp (Artemia sp) nauplii to formulated larva feed. Spring. 2013; 2:102. https://doi.org/10.1186/2193-1801-2-102
  15. Zuanon JAS, Salaro AL, Furuya WM. Produção e nutrição de peixes ornamentais. R Bras Zootec. 2011; 40:165–174. https://www.sbz.org.br/revista/artigos/66271.pdf
  16. Dias JAR, Abe HA, Sousa NC, Ramos FM, Cordeiro CAM, Fujimoto RY. Uso do sal comum (NaCl) e densidade de estocagem durante a larvicultura de Betta splendens. Bol Inst Pes. 2016; 42:719–726. https://doi.org/10.20950/1678-2305.2016v42n3p719
  17. Abe HA, Reis RGA, Barros FAL, Paixão PEG, Meneses JO, Souza JCN et al. Optimal management improves Flowerhorn fish larviculture. Aquac res. 2021; 52(5):2353-2358. https://doi.org/10.1111/are.15085
  18. Blaxter JHS. The effect of temperature on larval fishes. Neth J Zool. 1991; 42:336–357. https://doi.org/10.1163/156854291X00379
  19. Takata R, Silva WS, Costa DC, Filho RM, Luz RK. Effect of water temperature and prey concentrations on initial development of Lophiosilurus alexandri Steindachner, 1876 (Siluriformes: Pseudopimelodidae), a freshwater fish. Neot Ichth. 2014; 12:853–860. https://doi.org/10.1590/1982-0224-20140063
  20. Espirito Santo AH, de Alba G, Reis YS, Costa LS, Sánchez-Vázquez FJ, Luz RK, Ribeiro PAP, López-Olmeda JF. Effects of temperature regime on growth and daily rhythms of digestive factors in Nile tilapia (Oreochromis niloticus) larvae. Aquaculture. 2020; 528:735545. https://doi.org/10.1016/j.aquaculture.2020.735545
  21. Gomes LC, Baldisserotto B, Senhorini JA. Effect of stocking density on water quality, survival, and growth of larvae of the matrinxa, Brycon cephalus (Characidae), in ponds. Aquaculture. 2000; 183:73–81. https://doi.org/10.1016/S0044-8486(99)00288-4
  22. Bermudes M, Glencross B, Austen K, Hawkins W. The effects of temperature and size on the growth, energy budget and waste outputs of barramundi (Lates calcarifer). Aquaculture. 2010; 306:160–166. https://doi.org/10.1016/j.aquaculture.2010.05.031
  23. Sun L, Chen H. Effects of ration and temperature on growth, fecal production, nitrogenous excretion and energy budget of juvenile cobia (Rachycentron canadum). Aquaculture. 2009; 292:197–206. https://doi.org/10.1016/j.aquaculture.2009.04.041
  24. Bendiksen EÅ, Berg OK, Jobling M, Arnesen AM, Måsøval K. Digestibility, growth and nutrient utilisation of Atlantic salmon parr (Salmo salar L.) in relation to temperature, feed fat content and oil source. Aquaculture. 2003; 224:283–299. https://doi.org/10.1016/S0044-8486(03)00218-7
  25. McCormick SD, Shrimpton JM, Zydlewski JD. Temperature effects on osmoregulatory physiology of juvenile anadromous fish. Global warming: implications for freshwater and marine fish. Cambridge University Press. 1997.
  26. Portella MC, Jomori RK, Leitão NJ, Menossi OCC, Freitas TM, Kojima JT, Lopes TS, Clavijo-Ayala JA, Carneiro DJ. Larval development of indigenous South American freshwater fish species, with particular reference to pacu (Piaractus mesopotamicus): A review. Aquaculture. 2014; 432:402–417. https://doi.org/10.1016/j.aquaculture.2014.04.032
  27. Fabregat TEHP, Damian J, Fialho NS, Costa D, Broggi JA, Pereira RG, Takata R. Toxicidade aguda ao sal comum e larvicultura intensiva do jundiá Rhamdia quelen em água salobra. Arq Brasil Med Vet Zootec. 2015; 67(2):547-554. https://doi.org/10.1590/1678-7660
  28. Diemer O, Neu DH, Sary C, Finkler JK, Boscolo WR, Feiden A. Artemia sp. na alimentação de larvas de jundiá (Rhamdia quelen). Ciênc Anim Brasil. 2012; 13(2):175-179. http://hdl.handle.net/11449/73262
  29. Schutz, JH, Weinfartner, M, Zaniboni-Filho, E, Nuñer, APO. Crescimento e sobrevivência de larvas de suruvi Steindachneridion scriptum nos primeiros dias de vida: influência de diferentes alimentos e fotoperíodos. Boletim do Instituto de Pesca. 2008; 34(3):443-451. https://institutodepesca.org/index.php/bip/article/view/813/796
  30. Fosse PJ, Mattos DC, Cardoso LD, Motta JHS, Jasper APS, Radael M, Andrade DR, Júnior V. Estratégia de coalimentação na sobrevivência e no crescimento de larvas de Betta splendens durante a transição alimentar. Arq Brasil Med Vet Zootec. 2013; 65(6):1801-1807. https://doi.org/10.1590/S0102-09352013000600030
  31. Oliveira LCC, Neto EDAS, Junuior ADSP, Eiras BJCF, Veras GC, de Moura LB, Campelo DAV. Effect of prey concentrations and salinized water on initial development of Pyrrhulina brevis (Steindachner, 1876), an Amazonian ornamental fish. Res Soc Devel. 2020; 9(8):e381985582 https://doi.org/10.33448/rsd-v9i8.5582
  32. Santos JCE, Pedreira MM, Luz RK. The effects of stocking density, prey concentration and feeding on Rhinelepis aspera (Spix & Agassiz, 1829) (Pisces: Loricariidae) larviculture. Act Scien. Biol Sci. 2012; 34:133–139. https://doi.org/10.4025/actascibiolsci.v34i2.8541
  33. Luz RK, Portella MC. Effect of prey concentrations and feed training on production of Hoplias lacerdae juvenile. An Acad Brasil Ciênc. 2015; 87:1125–1132. https://doi.org/10.1590/0001-3765201520140412
  34. Santos JCE, Souza Correia E, Luz RK. Effect of daily artemia nauplii concentrations during juvenile production of Lophiosilurus alexandri. Bol Inst Pes. 2015; 41(Special):771-776. https://institutodepesca.org/index.php/bip/article/view/1104/1081
  35. Araújo LM, Gonçalves Junior LP, E Silva W de S, Luz RK. Salinity and prey concentration on larviculture of killifish Hypsolebias radiseriatus (Cyprinodontiformes: Rivulidae). Acta Sci Anim Sci. 2020; 43:1–9. https://doi.org/10.4025/actascianimsci.v43i1.52075
  36. Reis RGA, Alves PCJ, Abe HA, da Costa Sousa N, Paixão PEG, Palheta GDA, de Melo NFAC, Fujimoto RY, Luz RK, Takata R. Feed management and stocking density for larviculture of the Amazon ornamental fish L333 king tiger pleco Hypancistrus sp. (Siluriformes: Loricariidae). Aqua Res. 2020; 52(5):1995-2003. https://doi.org/10.1111/are.15047
  37. Lee SM, Hwang UG, Cho SH. Effects of feeding frequency and dietary moisture content on growth, body composition and gastric evacuation of juvenile Korean rockfish (Sebastes schlegeli). Aquaculture. 2000; 187:399–409. https://doi.org/10.1016/S0044-8486(00)00318-5
  38. Santos FAC, Julio GSC, Luz RK. Stocking density in Colossoma macropomum larviculture, a freshwater fish, in recirculating aquaculture system. Aqua Res. 2021; 52(3):1185-1191. https://doi.org/10.1111/are.14976
  39. Santos FAC, Julio, GSC, Batista, FS, Miranda, LNL, Pedras, PPC, Luz, RK. High stocking densities in the larviculture of Colossoma macropomum in a recirculating aquaculture system: Performance, survival and economic viability. Aquaculture. 2022; 552:738016. https://doi.org/10.1016/j.aquaculture.2022.738016
  40. Santos SS, Lopes JP, dos Santos-Neto MA, Santos LS. Larvicultura do Tambaqui em diferentes densidades de estocagem. Rev Brasil Eng Pes. 2007; 2:18–25. https://doi.org/10.18817/repesca.v2i3.48
  41. Jomori RK, Luz RK, Takata R, Perez Fabregat TEH, Portella MC. Água levemente salinizada aumenta a eficiência da larvicultura de peixes neotropicais. Pes Agro Brasil. 2013; 48:809–815. https://doi.org/10.1590/S0100-204X2013000800001
  42. Pedreira, MM, Sipaúba-Tavares, LH. Effect of light green and dark brown colored tanks on survival rates and development of tambaqui larvae, Colossoma macropomum (Osteichthyes, Serrasalmidae). Acta Scien, 2001; 23(2):521-525. https://doi.org/10.4025/actascibiolsci.v23i0.2711
  43. Pedreira, MM., Schorer, M, Ferreira, AL. Utilização de diferentes dietas na primeira alimentação de larvas de tambaqui. Revista Brasileira de Saúde e Produção Anim. 2015; 16:440–448. https://doi.org/10.1590/s1519-99402015000200018
  44. Qiang J, Zhong CY, Bao JW, Liang M, Liang C, Li HX, He J, Xu P. The effects of temperature and dissolved oxygen on the growth, survival and oxidative capacity of newly hatched hybrid yellow catfish larvae (Tachysurus fulvidraco♀ × Pseudobagrus vachellii♂). Jour. Therm. Biol. 2019; 86:102436. https://doi.org/10.1016/j.jtherbio.2019.102436
  45. Miegel RP, Pain SJ, Van Wettere WHEJ, Howarth GS, Stone DAJ. Effect of water temperature on gut transit time, digestive enzyme activity and nutrient digestibility in yellowtail kingfish (Seriola lalandi). Aquaculture. 2010; 308:145–151. https://doi.org/10.1016/j.aquaculture.2010.07.036
  46. Barros IBA, Villacorta-Correa MA, Carvalho TB. Stocking density and water temperature as modulators of aggressiveness, survival and zootechnical performance in matrinxã larvae, Brycon amazonicus. Aquaculture 2019; 502:378-383. https://doi.org/10.1016/j.aquaculture.2018.12.070
  47. Almeida‐Val VMF, Gomes ARC, Lopes NP. Metabolic and physiological adjustments to low oxygen and high temperature in fishes of the Amazon. Fish Physiology. 2005; 21:443-500. https://doi.org/10.1016/S1546-5098(05)21010-5
  48. Kramer DL, Lindsey CC, Moodie GEE, Stevens ED. The fishes and the aquatic environment of the central Amazon basin, with particular reference to respiratory patterns. Canad Jour Zool. 1978; 56:717–729. https://doi.org/10.1139/z78-101
  49. Hochachka PW, Somero GN. Biochemical adaptation: mechanism and process in physiological evolution. Oxford university press; 2002.
  50. Conceição LEC, Dersjant-Li Y, Verreth JAJ. Cost of growth in larval and juvenile African catfish (Clarias gariepinus) in relation to growth rate, food intake and oxygen consumption. Aquaculture. 1998; 161:95–106. https://doi.org/10.1016/S0044-8486(97)00260-3
  51. Drummond CD, Murgas LDS, Vicentini B. Growth and survival of tilapia Oreochromis niloticus (Linnaeus, 1758) submitted to different temperatures during the process of sex reversal. Ciênc Agrotec. 2009; 33:895–902. https://doi.org/10.1590/s1413-70542009000300033
  52. Luz RK, Zaniboni-Filho E. Utilização de diferentes dietas na primeira alimentação do mandi-amarelo (Pimelodus maculatus , Lacépéde). Acta Scie Bio Scie. 2001; 23:483–489. https://doi.org/10.4025/actascibiolsci.v23i0.2704
  53. Lombardi DC, Gomes LDC. Substituição de alimento vivo por alimento inerte na larvicultura intensiva do tambacu (♀ Colossoma macropomum X ♂ Piaractus mesopotamicus). Acta Scie Ani Scie; 2009; 30:467–472. https://doi.org/10.4025/actascianimsci.v30i4.3835
  54. Jomori RK, Carneiro DJ, Malheiros EB, Portella MC. Growth and survival of pacu Piaractus mesopotamicus (Holmberg, 1887) juveniles reared in ponds or at different initial larviculture periods indoors. Aquaculture. 2003; 221:277–287. https://doi.org/10.1016/S0044-8486(03)00069-3
  55. Hernández DR, Agüero CH, Santinón JJ, González AO, Sánchez, S. Growth, survival and bone alterations in Piaractus mesopotamicus larvae under different rearing protocols. Ciên Rur. 2015; 45:1667–1673. https://doi.org/10.1590/0103-8478cr20141139

Sistema OJS 3.4.0.3 - Metabiblioteca |