Persistence of pathogens in liquid pig manure processed in manure tanks and biodigesters

Contenido principal del artículo


Oscar Betancur H Antonio Betancourt E Julián Estrada A Francisco Henao U



Objective. To evaluate the persistence of virus, bacteria, mold, yeast and parasites in liquid pig manure, processed in biodigesters and manure tanks in the central-western part of Colombia. Materials and methods. A directed observational study analyzed descriptively was carried out in three pig farms located where the manure tanks were assembled and its biodigesters were used. A sampling of liquid pig manure was taken to assess the presence of 26 pathogens at the beginning of the study and another one at the end of the process in manure tanks and biodigesters. For the manure tank, a 250 liters tank was filled with fresh pig manure and was analyzed after three days of storage. The biodigesters were of continuous flow and its effluents were analyzed, according to the specific hydraulic retention times. The diagnostic techniques were those recommended specifically for each microorganism and were carried out in certified labs by the Colombian Animal Health authority. Results. Of the 26 pathogens that were investigated, 15 appeared in the fresh pig manure used in pig manure tanks and 12 in the one used in biodigestors. In manure tanks, Porcine Circovirus type 2 (PCV2), mold, yeast, Salmonella spp., Balantidium coli and Strongylids did not persist. In biodigesters, PCV2, yeast, Strongylids, B. coli and Strongyloides spp., did not persist. Conclusions. In both manure tanks and biodigesters, a variation could be seen in pathogen persistency, indicating that they act as transformation systems of pig manure for the removal of the latter, as long as the storage times are increased if the efficiency wants to be improved.


Objetivo. Evaluar la persistencia de virus, bacterias, mohos, levaduras, y parásitos en porcinaza líquida, procesada en biodigestores y tanques estercoleros en el centro–occidente de Colombia. Materiales y Métodos. Se realizó un estudio de observación dirigida analizada descriptivamente en tres explotaciones porcinas, donde se montaron tanques estercoleros y se aprovecharon sus biodigestores. Se realizó un muestreo de porcinaza fresca para analizar la presencia de 26 patógenos al comienzo del estudio y otro al final del proceso de estercoleros y biodigestores; los muestreos se repitieron en dos momentos en las tres granjas. Para el estercolero, se llenó un tanque de 250 litros con porcinaza fresca y se analizó después de tres días de almacenamiento. Los biodigestores fueron de flujo continuo, y se analizaron sus efluentes, según los tiempos de retención hidráulica específicos. Las técnicas diagnósticas fueron las recomendadas específicamente para cada microorganismo y se ejecutaron en laboratorios certificados por la autoridad sanitaria colombiana. Resultados. De los 26 patógenos investigados se detectaron 15 en la porcinaza fresca usada en estercoleros y 12 en la utilizada en biodigestores. En tanques estercoleros Circovirus Porcino tipo 2 (PCV2), mohos, levaduras, Salmonella spp., Balantidium coli y estrongilidos no persistieron. En biodigestores PCV2, levaduras, estrongilidos, B. coli y Strongyloides spp., no persistieron. Conclusiones. Tanto en estercoleros como biodigestores se observó variación en la persistencia de agentes patógenos, indicando que funcionan como sistemas de transformación de la porcinaza para la remoción de éstos, siempre y cuando se aumenten los tiempos de almacenamiento si se quiere mejorar su eficiencia.

Palabras clave:

Detalles del artículo


1. McGlone JJ. The future of pork production in the world: towards sustainable, welfare-positive systems. Animals 2013; 3(2):401-15.

2. Asociación Colombiana de Porcicultores. Análisis de coyuntura del sector porcícola a-o 2013. Porcicul Colomb 2014; 3(2):16-30.

3. Pell AN. Manure and microbes: public and animal health problem? J Dairy Sci 1997; 80(10):2673-81.

4. McCarthy G, Lawlor PG, Gutierrez M, Gardiner GE. Assessing the biosafety risks of pig manure for use as a feedstock for composting. Sci Total Environ 2013; 463-464:712-9.

5. Goss M, Richards C. Development of a risk-based index for source water protection planning, which supports the reduction of pathogens from agricultural activity entering water resources. J Environ Manage 2008; 87(4):623-32.

6. Fongaro G, Viancelli A, Magri ME, Elmahdy EM, Biesus LL, Kich JD, et al. Utility of specific biomarkers to assess safety of swine manure for biofertilizing purposes. Sci Total Environ 2014; 479-480:277-83.

7. Rivas O, Vargas F, Watson G. Biodigestores: factores químicos, físicos y biológicos relacionados con su productividad. Tecnol March 2010; 23(1):39-46.

8. Huong LQ, Madsen H, Anh le X, Ngoc PT, Dalsgaard A. Hygienic aspects of livestock manure management and biogas systems operated by small-scale pig farmers in Vietnam. Sci Total Environ 2014; 470-471:53-7.

9. Smith SR, Lang NL, Cheung KH, Spanoudaki K. Factors controlling pathogen destruction during anaerobic digestion of biowastes. Waste Manag 2005; 25(4):417-25.

10. Appels L, Baeyens J, Degrève J, Dewil R. Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 2008; 34(6):755–81.

11. Olugasa TT, Odesola IF, Oyewola MO. Energy production from biogas: A conceptual review for use in Nigeria. Renew Sust Energ Rev 2014; 32:770-6.

12. Masse D, Gilbert Y, Topp E. Pathogen removal in farm-scale psychrophilic anaerobic digesters processing swine manure. Bioresour. Technol 2011; 102(2):641-6.

13. Chen Y, Fu B, Wang Y, Jiang Q, Liu H. Reactor performance and bacterial pathogen removal in response to sludge retention time in a mesophilic anaerobic digester treating sewage sludge. Bioresour Technol. 2012; 106:20-6.

14. Estrada- Alvarez J, Gómez-Londo-o G, Jaramillo-Jimenez A. Efecto del biodigestor plástico de flujo continuo en el tratamiento de aguas residuales de establos bovinos. Vet Zootec 2008; 2(2):9-20.

15. Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC). Norma Técnica Colombiana NTC-ISO 5667-1. Gestión ambiental, Calidad del agua, Muestreo, Directrices para el dise-o de programas de muestreo. Bogotá, Colombia: ICONTEC; 1995.

16. Huang C, Hung JJ, Wu CY, Chien MS. Multiplex PCR for rapid detection of Pseudorabies Virus, Porcine Parvovirus and Porcine Circoviruses. Vet Microbiol 2004;101(3):209-14.

17. Urbaniak K, Markowska-Daniel I. Application of PCR based on apxIVA gene for rapid detection of Actinobacillus pleuropneumoniae. Bull Vet Inst Pulawy 2011; 55(4):609-12.

18. Asawakarn S, Watanaphansak S, Asawakarn T. Report of Lawsonia intracellularis Infection in Dogs by Polymerase Chain Reaction. Thai J Vet Med 2012; 42(4):523-26.

19. Lurchachaiwong W, Payungporn S, Srisatidnarakul U, Mungkundar C, Theamboonlers A, Poovorawan Y. Rapid detection and strain identification of porcine reproductive and respiratory syndrome virus (PRRSV) by real-time RT-PCR. Lett Appl Microbiol 2008; 46(1):55-60.

20. Instituto Colombiano Agropecuario (ICA). Directiva DIP–30-100-003. Directivas técnicas de alimentos para animales y sales mineralizadas. Alimentos para animales, parámetros microbiológicos. Instituto Colombiano Agropecuario, Ministerio de Agricultura y Desarrollo Rural. [en línea] 1999. [acceso julio de 2014] URL disponible en:

21. Instituto Nacional de Salud, Ministerio de la Protección Social. Evaluación de riesgos de Staphylococcus aureus enterotoxigénico en alimentos preparados no industriales en Colombia. Imprenta Nacional de Colombia. [en línea] 2011. [acceso julio de 2014] URL disponible en:

22. Gilbert RJ, de Louvois J, Donovan T, Little C, Nye K, Ribeiro CD, et al. Guidelines for the microbiological quality of some ready-to-eat foods sampled at the point of sale. Commun Dis Public Health 2000; 3(3):163-7.

23. Turner C, Burton CH. The inactivation of viruses in pig slurries: a review. Bioresour. Technol 1997; 61(1):9-20.

24. Ca-on-Franco WA, Henao-Agudelo RA, Pérez-Bedoya JL. Recovery of gastrointestinal swine parasites in anaerobic biodigester systems. Rev Bras Parasitol Vet 2012; 21(3):249-53.

25. Park K, Thompson A, Marinier M, Clark K, Wagner-Riddle C. Greenhouse gas emissions from stored liquid swine manure in a cold climate. Atmos Environ 2006; 40(4): 618-27.

26. Son TTD, Truong DV, Madsen H, Dalsgaard A. Survival of faecal indicator bacteria in treated pig manure stored in clay-covered heaps in Vietnam. Vet Microbiol 2011; 152(3-4):374-8.

27. Poudel RC, Joshi DR, Dhakal NR, Karki AB. Anaerobic digestion of sewage sludge mixture for the reduction of indicator and pathogenic microorganisms. Sci World 2010; 8(8):47-50.

28. Cao Y, Chang Z, Wang J, Ma Y, Fu G. The fate of antagonistic microorganisms and antimicrobial substances during anaerobic digestion of pig and dairy manure. Bioresour. Technol 2013; 136:664-71.

29. Huong LQ, Forslund A, Madsen H, Dalsgaard A. Survival of Salmonella spp. and fecal indicator bacteria in Vietnamese biogas digesters receiving pig slurry. Int J Hyg Environ Health 2014; 217(7):785-95.

30. Pourcher AM, Ziebal C, Kervarrec M, Bioteau T, Dabert P. Sanitary status of 44 hog manures in Brittany: comparison of the effectiveness of manure treatments based on the levels of indicator bacteria and two pathogenic bacteria. J Agr Sci Tech 2012; 3(A2):303-13.


La descarga de datos todavía no está disponible.