Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Caracterización de lenteja y jacinto de agua, efecto en la digestibilidad aparente en la tilapia

Characterization of duckweed and water hyacinth and their effect on the apparent digestibility in tilapia



Cómo citar
Botello-León, A. ., Méndez-Martínez, Y. ., Pérez-Corría, K. ., Ortega-Ojeda, M. ., Teresa-Viana, M. ., & Morán-Ribas, C. (2024). Caracterización de lenteja y jacinto de agua, efecto en la digestibilidad aparente en la tilapia. Revista MVZ Córdoba, 29(2), e3468. https://doi.org/10.21897/rmvz.3468

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Aroldo Botello-León
Yuniel Méndez-Martínez
Kirenia Pérez-Corría
Marcos Ortega-Ojeda
María Teresa-Viana
Charles Morán-Ribas

Aroldo Botello-León,

Universidad Técnica "Luis Vargas Torres" de Esmeraldas, Facultad de Ciencias Agropecuarias, Carrera de Zootecnia, Laboratorio de Acuicultura, Esmeraldas, Ecuador.


Yuniel Méndez-Martínez,

Universidad Técnica Estatal de Quevedo (UTEQ), Facultad de Ciencias Pecuarias y Biológicas, Quevedo, Los Ríos, Ecuador.


Kirenia Pérez-Corría,

Universidad Técnica "Luis Vargas Torres" de Esmeraldas, Facultad de Ciencias Agropecuarias, Carrera de Zootecnia, Laboratorio de Acuicultura, Esmeraldas, Ecuador.


Marcos Ortega-Ojeda,

Universidad Técnica "Luis Vargas Torres" de Esmeraldas, Facultad de Ciencias Agropecuarias, Carrera de Zootecnia, Laboratorio de Acuicultura, Esmeraldas, Ecuador.


María Teresa-Viana,

Universidad Autónoma de Baja California, Instituto de Investigaciones Oceanológicas, Ensenada, México.


Charles Morán-Ribas,

Universidad Técnica "Luis Vargas Torres" de Esmeraldas, Facultad de Ciencias Agropecuarias, Carrera de Zootecnia, Laboratorio de Acuicultura, Esmeraldas, Ecuador.


Objetivo. Evaluar la composición nutritiva de la lenteja de agua (LA) (Lemna minor) y jacinto de agua (JA) (Eichhornia crassipes) y su efecto en la digestibilidad aparente de la materia seca (%, DAMS), digestibilidad aparente de la proteína cruda (%, DAPC) y la digestibilidad aparente de la grasa cruda (%, DAGC) en la nutrición de la tilapia (Oreochromis niloticus). Materiales y métodos. La LA y el JA se utilizaron para formular nueve dietas isoproteicas (32.47%), isolipídicas (5.46%) e isoenergéticas (16.45 MJ kg-1), con tres repeticiones y 15 tilapias machos (36.36±1.16 g) por repetición: 0% (T0); 10% (T10); 15% (T15); 20% (T20) y 25% (T25), respectivamente al azar. Se aplicó un análisis de componentes principales (PCA). Resultados. La PC del JA y la LA, fue 21.72% y 27.37% (p˂0.05), respectivamente. Los peces alimentados con JA y LA, hasta 10 y 15% de inclusión en la dieta respectivamente, no mostraron diferencias significativas (p>0.05) para la DAMS, aunque para la DAPC y DAGC, hasta 15 y 20%, respectivamente, no se observó diferencias significativas (p>0.05). Conclusiones. Las harinas de jacinto de agua y lenteja de agua, son fuente de proteína vegetal alternativa, que pueden sustituir parcialmente la soya y maíz en dietas para la tilapia (O. niloticus). El PCA sugiere que la dieta de control, 10% JA, 10-15% LA, mostraron los mejores resultados en términos de digestibilidad aparente de los nutrientes.


Visitas del artículo 249 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Botello AL, Martínez YM, Viana MT, Ortega MO, Morán CM, Pérez KC, et al. Effect of palm kernel cake in the nutrition for tilapia fry (Oreochromis niloticus). Rev MVZ Córdoba. 2022; 27(2):1-10. https://doi.org/10.21897/rmvz.2527
  2. Botello AL, Martínez YA, Cotera MB, Morán CM, Ortega MO, Pérez KC, et al. Growth performance, carcass traits and economic response of broiler fed of palm kernel meal (Elaeis guineensis). Cuba J Agric Sci. 2020; 54(4):1-12. http://cjascience.com/index.php/CJAS/article/view/986
  3. Méndez-Martínez Y, Narváez-Narváez RI, Angulo C, Cortés-Jacinto E, Botello-León A, et al. Chemical composition of Tithonia diversifolia (Hemsl.) and its effect on growth performance, feed efficiency and metabolic biochemistry of juvenile hybrid tilapia Oreochromis mossambicus × Oreochromis niloticus. Not Bot Horti Agrobo. 2023; 51(3):1-20. https://doi.org/10.15835/nbha51313337
  4. Chakrabarti R, Clark WD, Sharma JG, Goswami RK, Shrivastav AK, Tocher DR. Mass Production of Lemna minor and Its Amino Acid and Fatty Acid Profiles. Front Chem. 2018; 6(479):1–16. https://doi.org/10.3389/fchem.2018.00479
  5. Krzywonos M, Romanowska-Duda Z, Seruga P, Messyasz B, Mec S. The Use of Plants from the Lemnaceae Family for Biofuel Production—A Bibliometric and In-Depth Content Analysis. Energies. 2023; 16(4):1–24. https://doi.org/10.3390/en16042058
  6. Ifie I, Olatunde S, Ogbon O, Umukoro JE. Processing techniques on phytochemical content, proximate composition, and toxic components in duckweed. Int J Veg Sci. 2020; 27(3):294–302. https://doi.org/10.1080/19315260.2020.1781320
  7. Yan Y, Candreva J, Shi H, Ernst E, Martienssen R, Schwender J, et al. Survey of the total fatty acid and triacylglycerol composition and content of 30 duckweed species and cloning of a Δ6-desaturase responsible for the production of γ-linolenic and stearidonic acids in Lemna gibba. BMC Plant Biol. 2013; 13(201):1–14. https://doi.org/10.1186/1471-2229-13-201
  8. Kalita P, Mukhopadhyay PK, Mukherjee AK. Evaluation of the nutritional quality of four un explored aquatic weeds from northeast India for the formulation of cost-effective fish feeds. Food Chem. 2007; 103(1):204-209. https://doi.org/10.1016/j.foodchem.2006.08.007
  9. Eid A, Mohamed K, Abd-elfattah B. Effect of Replacement of Soybean Meal with Duckweed (Lemna minor) Meal on the Growth Performance and Feed Utilization in Nile Tilapia Fingerlings. JAPFP. 2017; 6(1):7–12. https://journals.ekb.eg/article_7415_67ee66247e149553f8bd189d73e01d9a.pdf
  10. Asimi OA, Khan IA, Bhat TA, Husain N. Duckweed (Lemna minor) as a plant protein source in the diet of common carp (Cyprinus carpio) fingerlings. J Pharmacogn Phytochem. 2018; 7(3):42–45. https://www.phytojournal.com/archives/2018/vol7issue3/PartA/7-2-494-213.pdf
  11. Paguia HM, Pinsel JR, Paguia RQ, Abuan AG, Zabala SD, Corpuz MN, et al. Feeding Value of Fermented Duckweed Meal (Lemna minor Linn.) as a Plant Protein Components in the Formulated Diets of Free-Range Chicken (Gallus gallus domesticus Linn.). J Adv Agric Technol. 2023; 10(1):16–20. https://doi.org/10.18178/joaat.10.1.16-20
  12. Su W, Sun Q, Xia M, Wen Z, Yao Z. The resource utilization of water hyacinth (Eichhornia crassipes [Mart.] Solms) and its challenges. Resources. 2018; 7(3):1-9. https://doi.org/10.3390/resources7030046
  13. Suleiman M, Khadija AY, Nasiru Y, Garba AA, Alhassan M, Bello J. Proximate, Minerals and Anti-Nutritional Composition of Water Hyacinth (Eichhornia crassipes) Grass. Earthline J Chem Sci. 2020; 3(1):51-59. https://doi.org/10.34198/ejcs.3120.5159
  14. Debnath D, Yengkokpam S, Bhattacharjya BK, Biswas P, Prakash C, Kohli MP, et al. Effect of dietary incorporation of dry-powdered water hyacinth (Eichhornia crassipes) meal on growth and digestibility of Labeo rohita fingerlings. Proc Zool Soc. 2016; 71(2018):74–82. https://doi.org/10.1007/s12595-016-0187-6
  15. Alkassar SA, Al-Shukri AY. Effect of replacement water hyacinth meal (Eichhornia crassipes) by wheat in production and carcass traits in ross broiler chickens. Plant Arch. 2018; 18(2):2187–2193. https://plantarchives.org/18-02/2187-2193%20(4509).pdf
  16. Valdivié NM, Martínez AY, Mesa FO, Botello LA, Betancur HC, Velázquez MB. Review of Moringa oleifera as forage meal (leaves plus stems) intended for the feeding of non-ruminant animals. Anim Feed Sci Tech. 2020; 260(2020):1-9. https://doi.org/10.1016/j.anifeedsci.2019.114338
  17. Obirikorang KA, Amisah S, Fialor SC, Skov PV. Effects of dietary inclusions of oilseed meals on physical characteristics and feed intake of diets for the Nile Tilapia, Oreochromis niloticus. Aquacult Rep. 2015; 1(2015):1-7. http://dx.doi.org/10.1016/j.aqrep.2015.01.002
  18. National Research Council (NRC). Nutrient Requirements of Fish and Shrimp. Washington, DC: The National Academies Press; 2011. https://doi.org/10.17226/13039
  19. Negesse, T., H.P. Makkar, and K. Becker. Nutritive value of some non-conventional feed resources of Ethiopia determined by chemical analyses and an in vitro gas method. Anim Feed Sci Tech. 2009; 154(2009): 204–217. https://doi.org/10.1016/j.anifeedsci.2009.09.010
  20. Botello AL, Pérez KC, Méndez YM, Ortega MO, Martínez YA, Rodríguez YV, et al. Chemical composition of chicken intestines pre-dried with vegetable meals: alternative protein for aquaculture. Rev MVZ Cordoba. 2023; 28(2):1–11. https://doi.org/10.21897/rmvz.3058
  21. National Research Council (NRC). Nutrient Requirement of Fish. Committee on Animal Nutrition, Board of Agriculture, National Research Council. National Academic Press: Washington, DC USA; 1993. https://www.nap.edu/catalog/2115/nutrient-requirements-of-fish
  22. Obirikorang KA, Gyamfi S, Goode ME, Amisah S, Edziyie RE, Quagrainie K, et al. Effect of soybean meal diets on the growth performance, ammonia excretion rates, gut histology and feed cost of Nile tilapia (Oreochromis niloticus) fry. Aquac Res. 2020; 51(9):3520-3532. https://doi.org/10.1111/are.14689
  23. Official Methods of Analysis (AOAC), 19th edn. Association of Official Analytical Chemists, Gaithersburg, Maryland, USA. 2012. https://www.techstreet.com/standards/official-methods-of-analysis-of-aoac-international-19th-edition-2012?product_id=1881941
  24. Van Soest PJ, Robertson JB, Lewis BA. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J Dairy Sci. 1991; 74(10):3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  25. Van Keulen J, Young BA. Evaluation of acid insoluble ash as a natural marker in ruminant digestibility studies. J Anim Sci. 1977; 44(2):282-287. https://doi.org/10.2527/jas1977.442282x
  26. Tacon A. Standard Methods for the Nutrition and Feeding of Farmed Fish and Shrimp. Argent Laboratories Press: Washington; 1990.
  27. Ramanathan G, Ramalakshmi P, Gopperundevi B, Suresh JI. Production Characterization and Aqua Feed Supplementation of Astaxanthin from Halobacterium salinarium. Int J Curr Microbiol App Sci. 2015; 4(3):56-63. https://www.ijcmas.com/vol-4-3/G.Ramanathan,%20et%20al.pdf
  28. Opiyo M, Mbogo K, Obiero K, Orina P, Muendo, P. Nutritional Composition of Duckweed (Lemna minor) Cultured with Inorganic Fertilizer and Organic Manure in Earthen Ponds. LimnoFish. 2023; 9(3):123-129. https://doi.org/10.17216/LimnoFish.1152512
  29. Pérez-Corría K, Botello-León A, Mauro-Félix A, Rivera-Pineda F, Viana M, Cuello-Pérez M, et al. Chemical composition of earthworm (Eisenia foetida) co-dried with vegetable meals as an animal feed. Rev Ciencia y Agricultura. 2019; 16(2):79-92. https://doi.org/10.19053/01228420.v16.n2.2019.9130
  30. Martínez-Yáñez R, Albertos-Alpuche PJ, Guzmán-Mendoza R, Robaina-Robaina LE, Álvarez-González A, Díaz-Plascencia D. Production and chemical composition of hydrophytes cultivated in aquaponics. Ecosist Recur. Agropec. 2018; 5(14):247–257. https://doi.org/10.19136/era.a5nl4.1447
  31. Lata N, Dubey V. Eichhornia crassipes a suitable economic feed: the world’s worst aquatic weed. J Food Technol. 2010; 8(3):102–105. https://doi.org/10.3923/jftech.2010.102.105
  32. Sotolu AO, Sule SO. Digestibility and performance of water hyacinth meal in the diets of African catfish (Clarias gariepinus; Burchell, 1822). Trop Subtrop Agroecosystems. 2011; 14(2011):245–250. https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/588
  33. Ibrahim WM, Eid AE, Mohamed K, Abd-elfattah B. Effect of Replacement of Soybean Meal with Duckweed (Lemna minor) Meal on the Growth Performance and Feed Utilization in Nile Tilapia Fingerlings. JAPFP. 2017; 6(1):7–12. https://journals.ekb.eg/article_7415_67ee66247e149553f8bd189d73e01d9a.pdf
  34. Méndez-Martínez Y, Vera-Veliz AR, Cortés-Jacinto E, Cruz-Quintana Y, Botello-León A, Mendoza-Carranza PD, Calvo NS. Growth Performance, Feed Utilisation, Digestive and Metabolic Enzyme Activity, and Liver Morphohistology in Hybrid Tilapia (Oreochromis mossambicus × Oreochromis niloticus) Juveniles Fed with the Inclusion of Chitosan in Their Diet. Fishes. 2023; 8(11):1-14. https://doi.org/10.3390/fishes8110546

Sistema OJS 3.4.0.3 - Metabiblioteca |