Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Propiedades fisicoquímicas de la leche de cabra en unidades productivas a pequeña escala

Physicochemical properties of goat milk from small-scale production units



Cómo citar
Chel-Guerrero, L., Barrientos-Ávila, C., Castellanos-Ruelas, A., Gallegos-Tintoré, S., & Betancur-Ancona, D. (2024). Propiedades fisicoquímicas de la leche de cabra en unidades productivas a pequeña escala. Revista MVZ Córdoba, 29(3), e3555. https://doi.org/10.21897/rmvz.3555

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Carolina Barrientos-Ávila
Arturo Castellanos-Ruelas
Santiago Gallegos-Tintoré

Luis Chel-Guerrero,

Universidad Autónoma de Yucatán. Facultad de Ingeniería Química. Periférico Norte Km. 33.5, Chuburná de Hidalgo Inn. Mérida, Yucatán, México. 


Carolina Barrientos-Ávila,

Universidad Autónoma de Yucatán. Facultad de Ingeniería Química. Periférico Norte Km. 33.5, Chuburná de Hidalgo Inn. Mérida, Yucatán, México.


Arturo Castellanos-Ruelas,

Universidad Autónoma de Yucatán. Facultad de Ingeniería Química. Periférico Norte Km. 33.5, Chuburná de Hidalgo Inn. Mérida, Yucatán, México.


Santiago Gallegos-Tintoré,

Universidad Autónoma de Yucatán. Facultad de Ingeniería Química. Periférico Norte Km. 33.5, Chuburná de Hidalgo Inn. Mérida, Yucatán, México.


David Betancur-Ancona,

Universidad Autónoma de Yucatán. Facultad de Ingeniería Química. Periférico Norte Km. 33.5, Chuburná de Hidalgo Inn. Mérida, Yucatán, México.


Objetivo. Evaluar la composición fisicoquímica y el valor nutritivo de leche de cabra en tres diferentes sistemas de manejo productivo a pequeña escala en Mérida, Yucatán, México; con la finalidad de producir leche destinada a la alimentación humana con problemas de asimilación de lactosa. Materiales y métodos. Se recolectaron muestras de leche cada dos semanas durante cuatro meses y se les cuantificó sólidos totales, grasa, proteína, lactosa, cenizas, calcio y fósforo. Se determinó densidad, pH, acidez, ácidos grasos por cromatografía de gases y caseínas por electroforesis. Resultados. La composición promedio fue 2.69% grasa, 4.10% proteína, 4.12% lactosa, 12.96% sólidos totales, 0.83% cenizas, 139 mg/100g calcio y 105 mg/100g fósforo. La densidad, acidez como ácido láctico y pH obtenidos fueron 1.032 g/cm3, 1.36 g/L y 6.51, respectivamente. Las leches aportaron MUFAs como ácidos oleico y gadoleico, y PUFAs como ácido linoleico y araquidónico, implicados procesos metabólicos que reducen el riesgo del síndrome metabólico. El patrón electroforético de las caseínas mostró bandas más abundantes con pesos moleculares de 20 a 36 kDa. Conclusiones. La composición de la leche de cabra producida resultó ser superior, con ventajas nutricionales, y potenciales beneficios a la salud respecto a la leche de otras especies. El contenido de lactosa, el pH y la acidez de la leche de cabra fueron diferentes en función de las unidades de producción; y la densidad, grasa, proteína y cenizas no se vieron influenciadas. La ausencia αs1-caseína sería ventajoso para la reducción de alergias asociadas al consumo de leche.


Visitas del artículo 290 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Colonna MA, Rotondi P, Selvaggi M, Caputi-Jambrenghi A, Ragni M, Tarricone S. Sustainable rearing for kid meat production in Southern Italy marginal areas: a comparison among three genotypes. Sustainability. 2020; 12:6922-6936. https://doi.org/10.3390/su12176922
  2. FAO. FAOSTAT—Statistical Databases. Food and Agriculture Organisation of the United Nation; 2023. http://www.fao.org/faostat/en/#data/QCL
  3. Isidro-Requejo LM, Meza-Herrera CA, Pastor-López FJ, Maldonado JA, Salinas-González H. Physicochemical characterization of goat milk produced in the Comarca Lagunera, Mexico. Anim Sci J. 2019; 90:563–573. https://doi.org/10.1111/asj.13173
  4. Ramírez-Rivera EJ, Rodríguez-Miranda J, Huerta-Mora IR, Cárdenas-Cágal A, Juárez-Barrientos JM. Tropical milk production systems and milk quality: a review. Trop Anim Health Prod. 2019; 51:1295–1305. https://doi.org/10.1007/s11250-019-01922-1
  5. Yadav KA, Singh J, Yadav KS. Composition, nutritional and therapeutic values of goat milk: A review. Asian J Dairy Food Res. 2016; 35(2):96-102. https://doi.org/10.18805/ajdfr.v35i2.10719
  6. Kawęcka A, Pasternak M. Chemical, nutritional and sensory characteristics of milk and cheeses obtained from autochthonous, cosmopolitan, and crossbred goats, Ann Anim Sci. 2024; https://doi.org/10.2478/aoas-2024-0006
  7. Bodnár Á, Egerszegi I, Kuchtik J, Penksza K, Póti P, Pajor F. Effect of grazing on composition, fatty acid profile and nutritional indices of the goat milk and cheese. J Anim Feed Sci. 2021; 30(4):320-328. https://doi.org/10.22358/jafs/144843/2021
  8. Meena-Goswami BSK, Tewari A, Sharma H, Karunakara KN, Khanam T. Implication of functional ingredients of goat milk to develop functional foods. J Anim Feed Sci Tech. 2017; 5:65–72. https://doi.org/10.21088/jafst.2321.1628.5217.5
  9. Kawęcka A, Pasternak M. Nutritional and dietetic quality of milk and traditional cheese made from the milk of native breeds of sheep and goats. J Appl Anim Res. 2022; 50:39–46. https://doi.org/10.1080/09712119.2021.2020125
  10. Singh S, Kaur G, Rana Partap Singh-Brar RP, Singh-Preet G. Goat milk composition and nutritional value: A review. Pharma Innov J. 2021;10(6S):536-540. https://www.thepharmajournal.com/special-issue?year=2021&vol=10&issue=6S&ArticleId=6712
  11. AOAC. Official Method 989.04. Fat in raw milk. Babcock method, Official Methods of Analysis of AOAC International, 15th Edition. AOAC Association of Official Analytical Chemists: Arlington, USA. 1997.
  12. NOM-155-SCFI-2012. Leche-Denominaciones, especificaciones fisicoquímicas, información comercial y métodos de prueba. NORMA Oficial Mexicana; 2012. https://www.dof.gob.mx/normasOficiales/4692/seeco/seeco.htm
  13. AOAC. Official Method 969.33. Fatty Acid in Oils and Fats Preparation of Methyl Ester Boron Trifluoride Method, Official Methods of Analysis of AOAC International, 15th Edition. AOAC Association of Official Analytical Chemists: Washington DC, USA; 1990.
  14. NIST. Mass spectral library (NIST/EPA/NIH). National Institute of Standards and Technology: Gaithersburg; 2008. https://chemdata.nist.gov/mass-spc/ms-search/docs/Ver20Man.pdf
  15. Qin YS, Jiang H, Wang CF, Cheng M, Wang LL, Huang MY, Zhao QX, Jiang HH. Physicochemical and functional properties of goat milk whey protein and casein obtained during different lactation stages. J Dairy Sci. 2021; 104(4):3936-3946. https://doi.org/10.3168/jds.2020-19454.
  16. StatGraphics Centurion software, Statgraphics Technologies, Inc., The Plains, VA, USA; 2019. https://www.statgraphics.com.
  17. Jin YK, Park YW. SDS-PAGE of proteins in goat milk cheeses pipened under different conditions. J Food Sci. 1996; 61:490-495. https://doi.org/10.1111/j.1365-2621.1996.tb13140.x
  18. Zannierah-Mohsin A, Sukor R, Selamat J, Meor-Hussin AS, Intan Hakimah-Ismail I. Chemical and mineral composition of raw goat milk as affected by breed varieties available in Malaysia. Int J Food Prop. 2019; 22(1):815-824. https://doi.org/10.1080/10942912.2019.1610431
  19. Pajor F, Várkonyi D, Dalmadi I, Pásztorné-Huszár, K, Egerszegi I, Penksza K, Póti P, Bodnár Á. Changes in chemical composition and fatty acid profile of milk and cheese and sensory profile of milk via supplementation of goats’ diet with marine algae. Animals. 2023; 13:2152-. https://doi.org/10.3390/ani13132152
  20. Atika B, Yamina M, Baaissa B. Comparative study of some physicochemical criteria of the milk of goats raised in the Touggourt region, Algeria. J Food Nut Res. 2023; 11(2):144-149. https://doi.org/10.12691/jfnr-11-2-5
  21. Mohammed, Elimam-Ahamed M, Brima, Ibrahim E, Alasidy, Aaed, Qurishi, Nasir, Algarni, Moad, Alshehri, Mohammed-Abdallah B. Physicochemical properties and some mineral concentration of milk samples from different animals and altitudes. Open Chem. 2022; 20(1):494-504. https://doi.org/10.1515/chem-2022-0171
  22. Stergiadis S, Nørskov NP, Purup S, Givens I, Lee MRF. Comparative Nutrient Profiling of Retail Goat and Cow Milk. Nutrients. 2019; 11(10):2282. https://doi.org/10.3390/nu11102282
  23. Vargas-Bello-Pérez E, García Montes de Oca CA, Pescador Salas N, Estrada Flores JG, Romero Bernal J, Robles-Jimenez LE, Gonzalez-Ronquillo M. Productive performance, milk composition and milk fatty acids of goats supplemented with sunflower and linseed whole seeds in grass silage-based diets. Animals. 2020; 10(7):1143-1155. https://doi.org/10.3390/ani10071143
  24. Swanson D, Block R, Mousa SA. Omega-3 fatty acids EPA and DHA: health benefits throughout life. Adv Nutr. 2012; 3(1):1-7. https://doi.org/10.3945/an.111.000893
  25. Baker EJ, Miles EA, Burdge GC, Yaqoob P, Calder PC. Metabolism and functional effects of plant-derived omega-3 fatty acids in humans. Prog Lipid Res. 2016; 64:30-56, https://doi.org/10.1016/j.plipres.2016.07.002
  26. Padilla-Doval J, Zambrano-Arteaga JC. Estructura, propiedades y genética de las caseínas de la leche: una revisión. CES Med. Zootec. 2021; 16(3):62-95. https://dx.doi.org/10.21615/cesmvz.5231
  27. Rahmatalla SA, Arends D, Brockmann GA. Review: Genetic and protein variants of milk caseins in goats. Front Genet. 2022; 13:995349. https://doi.org/10.3389/fgene.2022.995349
  28. Nayik GA, Jagdale YD, Gaikwad SA, Devkatte AN, Dar AH, Ansari MJ. Nutritional profile, processing and potential products: A comparative review of goat milk. Dairy. 2022; 3:622–647. https://doi.org/10.3390/dairy3030044
  29. Ingham B, Smialowska A, Kirby NM, Wang C, Carr AJ. (2018). A structural comparison of casein micelles in cow, goat and sheep milk using X-ray scattering. Soft Matter. 2018; 14:3336–3343. https://doi.org/10.1039/c8sm00458g

Sistema OJS 3.4.0.3 - Metabiblioteca |