Metodología para la determinación de cortisol plasmático en peces usando la prueba de inmunoensayo enzimático (ELISA)

##plugins.themes.bootstrap3.article.main##

Yohana Velasco Santamaría
Pablo Cruz Casallas
Resumen
Objetivo. Describir el procedimiento para determinar cortisol plasmático en peces, utilizando la prueba de inmunoensayo enzimático (ELISA). Materiales y métodos. Dos muestras de plasma de trucha arco iris Oncorhynchus mykiss fueron analizadas empleando un kit de ELISA desarrollado para humanos. Siete soluciones estándar conteniendo 0, 20, 50, 100, 200, 400 y 800 ng.ml-1 de cortisol fueron usadas para construir una curva de calibración. Para la prueba de recuperación se emplearon las soluciones estándar de 50, 100 y 200 ng.ml-1; finalmente, para la prueba de linealidad se prepararon cuatro diluciones de las muestras de plasma, así: 1/2, 1/4, 1/8 y 1/16. A cada pozo de la placa se adicionaron tanto las muestras de plasma como las soluciones estándar, las cuales fueron conjugadas con peroxidasa y posteriormente se adicionó el substrato de la enzima. Esta reacción enzimática se detuvo por medio de la adición de ácido fosfórico (0.5 M) y posteriormente, la absorbancia fue medida a 450 nm. La precisión del procedimiento de pipetaje fue evaluado previo a la prueba. El porcentaje de recuperación y de linealidad, así como la curva de calibración y de paralelismo fueron determinadas. Resultados. La curva estándar mostró un alto coeficiente de correlación (r2 = 0.998). La concentración de cortisol en las dos muestras de plasma fluctuó entre 64 y 72 ng.ml-1. Sólo la solución estándar de 200 ng.ml-1 mostró un porcentaje de recuperación superior al 80%; en contraste, en las soluciones estándar de 50 y 100 ng.ml-1 el porcentaje de recuperación fluctuó entre 52 y 71%. En las diluciones de 1/2 y 1/8 se observó un buen porcentaje de linealidad (86 a 168%). Finalmente, las muestras mostraron cierto grado de paralelismo con la curva estándar. Conclusiones. El uso de la prueba de ELISA para determinar cortisol plasmático en humanos, es confiable y eficiente para la cuantificación de cortisol plasmático en peces.
Palabras clave

Descargas

Los datos de descargas todavía no están disponibles.

##plugins.themes.bootstrap3.article.details##

Biografía del autor/a / Ver

Yohana Velasco Santamaría

MRes student, University of Plymouth, United Kingdom

Pablo Cruz Casallas

Instituto de Acuicultura, Facultad de Ciencias Agropecuarias y Recursos Naturales, Universidad de los Llanos, Villavicencio (Meta) Colombia
Referencias / Ver

Tin to s A , Migue z J , Man ce ra J , Soengas J. Development of a microtitre plate indirect ELISA for measuring cortisol in teleosts, and evaluation of stress responses in rainbow trout and gilthead sea bream. J Fish Biol 2006; 68(1): 251-263. http://dx.doi.org/10.1111/j.0022-1112.2006.00898.x

Tri p a t hi G , Ve rm a P. Pa t hway - specific response to cortisol in the metabolism of catfish. Comp Biochem Physiol B 2003; 136(3): 463-471. http://dx.doi.org/10.1016/S1096-4959(03)00249-5

L e u n g W, C h a n P, B o s g o e d F, Lehmann K, Renneberg I, Lehmann M et al. One-step quantitative cortisol dipstick with proportional reading. J Immunol Methods 2003; 281(1-2): 109-118.

Donaldson E. The pituitary-interrenal axis and indicator of stress in fish. In: Pickering AD (Ed.), Stress and Fish Bristol Academic Press Inc 1981, pp.367

Eddy F. Effects of stress on osmotic and ionic regulation in fish. In: Pickering AD (Ed.), Stress and Fish, Bristol, Academic Press Inc 1981, pp.367.

Nelson D, Cox M. Lehninger Principles of Biochemistry, W.H. Freeman & Co 2005, pp.1119.

Chester J, Chan D, Henderson I, Ball J. The adrenocortical steroids, adrenocorticotropin and the corpuscles of Stannius. In: Hoar WS and Randall DJ (Eds.), Fish Physiology: The Endocrine System, London, Academic Press Inc 1969, pp.446.

Ellis A. Stress and the modulation of defence mechanims in fish. In: Pickering AD (Ed.), Stress and Fish, Bristol, Academic Press Inc 1981, pp.367.

Jensen K, Ankley G. Evaluation of a commercial kit for measuring vitellogenin in the fathead minnow (Pimephales promelas). Ecotoxicol Environ Saf 2006; 64(2): 101-105. http://dx.doi.org/10.1016/j.ecoenv.2006.02.011

Barry T, Lapp A, Kayes T, Malison J. Validation of a microtitre plate ELISA for measuring cortisol in fish and comparison of stress responses of rainbow trout (Oncorhynchus mykiss) and lake trout (Salvelinus namaycush). Aquaculture 1993; 117(3-4): 351-363.

Carey J, McCormick S. Atlantic salmon smolts are more responsive to an acute handling and confinement stress than parr. Aquaculture 1998; 168(1-4): 237-253.

Kelly S, Woo N. The response of sea bream following abrupt hyposmotic exposure. J Fish Biol 1999; 55(4): 732-750. http://dx.doi.org/10.1111/j.1095-8649.1999.tb00714.x

B a y u n o v a L , B a r a n ni k o v a I , S em e n ko va T. S t u r g e o n s t r e s s reactions in aquaculture. J Appl Ichthyol 2002; 18(4-6): 397-404.

Cataldi E, Di Marco P, Mandich A, Cataudella S. Serum parameters of Adriatic sturgeon Acipenser naccarii (Pisces: Acipenseriformes): effects of temperature and stress. Comp Biochem Physiol A 1998; 121(4): 351-354. http://dx.doi.org/10.1016/S1095-6433(98)10134-4

Lankford S, Adams TE, Cech J. Time of day and water temperature modify the physiological stress response in green sturgeon, Acipenser medirostris. Comp Biochem Physiol 2003; 135(2): 291-302. http://dx.doi.org/10.1016/S1095-6433(03)00075-8

Schreck C, Contreras-Sanchez W, Fitzpatrick M. Effects of stress on fish reproduction, gamete quality, and progeny. Aquaculture 2001; 197(1-4): 3-24.

Ortu-o J, Esteban M, Meseguer J. Effects of four anaesthetics on the innate immune response of gilthead seabream (Sparus aurata L.). Fish Shellfish Immunol 2002; 12(1): 49-59.

Citado por