Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Tick loads in Bos taurus cattle grazing in two contrasting production systems

Tick loads in Bos taurus cattle grazing in two contrasting production systems



Abrir | Descargar

Cómo citar
Salazar B, R., Barahona-Rosales, R., & Sánchez P, M. S. (2016). Tick loads in Bos taurus cattle grazing in two contrasting production systems. Revista MVZ Córdoba, 21(2), 5404-5415. https://doi.org/10.21897/rmvz.606

Dimensions
PlumX
Raquel Salazar B
Rolando Barahona-Rosales
María Solange Sánchez P

Objectives. To relate the effect of biotic and abiotic factors on Rhipicephalus (Boophilus) microplus tick loads on cows grazing either in intensive silvopastoral systems (ISS) (Lucerna) or in grass pastures associated with sugarcane plantations (La Isabela). Materials and methods. Tick counts were performed on 27 Lucerne breed animals that were in different physiological states, six of which were grazing on forage grass paddocks associated with commercial sugarcane plantations and the remaining animals grazed in an ISS based on Leucaena leucocephala and Cynodon plectostachyus. The tick counts were made every 15 days. The data of temperature, humidity, and radiation were taken from a weather station that was inside the ISS. Results. There was a weak relationship between saturation deficit and tick load (R2=0.34) and another between UV radiation and tick load (R2=0.205) for animals grazing in ISS. There were differences in tick counts when comparing animals of similar productivity from both systems evaluated: in La Isabela (sugarcane grass paddocks) average counts were 311 ticks perceptible to the touch (TPT) and in Lucerna (ISS farm) average counts were 206 TPT (p= 0.02). Additionally, there were greater tick counts in high productivity cows compared to low productivity cows. Conclusions. The abiotic and biotic factors of the ecosystem and animal productivity can affect the TPT counts. In ISS systems, tick counts can be lower than those observed in monoculture grazing systems.

Objetivos. Relacionar el efecto de algunos factores bioticos y abioticos sobre las cargas de la garrapata Rhipicephalus (Boophilus) microplus en hembras bovinas que pastorean en sistemas silvopastoriles intensivos (SSPi)(Lucerna) y en monocultivos asociados a cañaduzales (La Isabela). Materiales y métodos. Se realizaron conteos en 27 animales de raza Lucerna en diferentes estados fisiológicos, seis de los cuales se encontraban pastoreando en lotes de gramíneas forrajeras asociados con plantaciones de caña comerciales y los animales restantes pastoreaban en SSPi basados en Leucaena leucocephala y Cynodon plectostachyus. El conteo de garrapatas se efectuó cada 15 días. Los datos de temperatura, humedad y radiación se tomaron de una estación meteorológica que se encontraba en el interior del SSPi. Resultados. Se encontró una relación débil entre el déficit de saturación y los conteos de garrapatas (R2=0.34) y entre la radiación UV y los conteos de garrapatas (R2=0.205) para los bovinos pastoreando en SSPi. Hubo diferencia entre los conteos en animales con similar productividad en ambos sistemas evaluados; siendo el promedio total de garrapatas perceptibles al tacto (GPT) de 311 para La Isabela y de 206 GPT para Lucerna (p=0.02). Hubo mayor número de GPT en hembras con mayor productividad en comparación con las de baja productividad (p<0.05). Conclusiones. Los factores bióticos y abióticos del ecosistema pueden influir en el promedio de GPT, al igual que el nivel de productividad de los animales. En SSPi, la carga de garrapatas puede ser inferior a la de sistemas de pastoreo en monocultivo.


Visitas del artículo 950 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Rodríguez-Vivas RI, Hodgkinson JE, Trees. Revisián: Resistencia a los acaricidas en Rhipicephalus (Boophilus) microplus: situacián actual y mecanismos de resistencia. Rev Mex Cienc Pecu 2012;3 Supl 1:9-24 [fecha de acceso 11 de marzo de 2015]; URL disponible en http://www.tecnicapecuaria.org.mx/trabajos/201210084933.pdf
  2. Salazar Benjumea RS, Barahona Rosales R, Chará Orozco JD, Sánchez Pinzán MS. Productivity and tick load in bos indicus x b. taurus cattle in a tropical dry forest silvopastoral system. Tropical and Subtropical Agroecosystems 18(2015):103-112
  3. Frazier MR, Huey RB, Berrigan D, Gern L, Morán Cadenas F, Burri C. Thermodynamics constrains the evolution of insect population growth rates: ″warmer is better". Am Nat 2006; 168(4):512-20. http://dx.doi.org/10.1086/506977
  4. Estrada-Pe-a A, Bouattour A, Camicas JL, Guglielmone A, Horak I, Jongejan F, Latif A, Pegram R, Walker AR. The known distribution and ecological preferences of the tick subgenus Boophilus (Acari: Ixodidae) in Africa and Latin America. Exp App Acarol 2006; 38:219 -335. http://dx.doi.org/10.1007/s10493-006-0003-5
  5. Sutherst RW, Bourne AS. The effect of desiccation and low temperature on the viability of eggs and emerging larvae of the tick, Rhipicephalus (Boophilus) microplus (Canestrini) (Ixodidae). Int J Parasitol 2006; 36:193−200 http://dx.doi.org/10.1016/j.ijpara.2005.09.007
  6. Corson, M.S, (2004). Microclimate influence in a physiological model of cattle-fever tick (Boophilus spp.) population dynamics. Ecol Model. 2004; 180:487-514. http://dx.doi.org/10.1016/j.ecolmodel.2004.04.034
  7. Cuartas CA, Naranjo JF, Tarazona AM, Murgueitio E, Chará JD, Ku Vera J et al. Contribution of intensive silvopastoral systems to animal performance and to adaptation and mitigation of climate change. Rev Col Cienc Pec. 2014; 27(2):76-94.
  8. Murgueitio-Restrepo E, Chará-Orozco JD, Barahona-Rosales R, Cuartas-Cardona CA, Naranjo-Ramírez, JF. Intensive silvopastoral systems (ISPS), mitigation and adaptation tool to climate change. Tropical and Subtropical Agroecosystems 2014; 17(3):501−507.
  9. Cuartas CA, Naranjo JF, Tarazona AM, Barahona R. Uso de la energía en bovinos pastoreando sistemas silvopastoriles intensivos con Leucaena leucocephala y su relacián con el desempe-o animal. Rev CES Med Vet Zoot 2013; 8(1):70−81.
  10. Tarazona AM, Ceballos MC, Cuartas CA, Naranjo JF, Murgueitio E, Barahona R. The relationship between nutritional status and bovine welfare associated with adoption of intensive silvopastoral systems in tropical conditions. Some Case Studies. Roma: FAO; 2013.
  11. Wharton RH, Utech KBW. The relation between engorgement and dropping of Boophilus microplus (Canestrini) (Ixodidae) to the assessment of tick numbers on cattle. J Aust Entomol Soc 1970; 9:171-182. http://dx.doi.org/10.1111/j.1440-6055.1970.tb00788.x
  12. Haydock KP, Shaw NH. The comparative yield method for estimating dry matter yield of pasture. Aust J Exp Agr 1975; (15):663-670.
  13. Jonsson NN. The productivity effects of cattle tick (Boophilus microplus) infestation on cattle, with particular reference to Bos indicus cattle and their crosses. Vet Parasitol 2006; 137(1-2):1−10. http://dx.doi.org/10.1016/j.vetpar.2006.01.010
  14. Navas Panadero A. Influencia de la cobertura arborea de sistemas silvopastoriles en la distribucián de garrapatas en fincas ganaderas en el bosque seco tropical. [Tesis M.Sc]. Turrialba, Costa Rica: 2003. URL Disponible en: http://www.sidalc.net/repdoc/A0116e/A0116e.pdf.
  15. Constantinoiu CC, Jackson LA, Jorgensen WK, Lew-Tabor AE, Piper EK, Mayer DG, et al. Local immune response against larvae of Rhipicephalus (Boophilus) microplus in Bos taurus indicus and Bos taurus taurus cattle. Intern J Parasitol 2010; 40(7):865-875.
  16. http://dx.doi.org/10.1016/j.ijpara.2010.01.004
  17. Machado MA, Azevedo, AL, Teodoro RL, Pires MA, Peixoto MG, de Freitas C, Prata MC, Furlong J, et al. Genome wide scan for quantitative trait loci affecting tick resistance in cattle (Bos taurus × Bos indicus). BMC Genomics 2010; 11:280. [Fecha de acceso 11 de marzo de 2015]; URL disponible en http://www.biomedcentral.com/content/pdf/1471-2164-11-280.pdf
  18. Molento MB, Fortes FS, Buzatti A, Kloster FS, Sprenger LK, Coimbra E, et al. Partial selective treatment of Rhipicephalus microplus and breed resistance variation in beef cows in Rio Grande do Sul, Brazil. Vet Parasitol 2013; 192(1):234-239. http://dx.doi.org/10.1016/j.vetpar.2012.10.021
  19. Gern L, Moran Cadenas F, Burri C. Influence of some climatic factors on Ixodes ricinus ticks studied along altitudinal gradients in two geographic regions in Switzerland. Int J Med Microbial 2008; 298(1):55-59. http://dx.doi.org/10.1016/j.ijmm.2008.01.005
  20. Cortés Vencino JA, Betancourt JA, Argüelles J, Pulido L A. Distribucián de garrapatas Rhipicephalus (Boophilus) microplus en bovinos y fincas del altiplano cundiboyacense (Colombia). CORPOICA Cienc Tecnol Agropecu 2010; 11(1):73-84. http://dx.doi.org/10.21930/rcta.vol11_num1_art:197
  21. Estrada-Pe-a A, Venzal JM. High-resolution predictive mapping for Boophilus annulatus and B. microplus (Acari: ixodidae) in Mexico and Southern Texas. Vet Parasitol 2006; 142:350−358. http://dx.doi.org/10.1016/j.vetpar.2006.07.003
  22. Adejinmi JO. Effect of water flooding on the oviposition capacity of engorged adult females and hatchability of eggs of dog ticks: Rhipicephalus sanguineus and Haemaphysalis leachi leachi. J Parasitol Res 2011; 11 Article ID 824162. URL disponible en http://www.hindawi.com/journals/jpr/2011/824162/cta/
  23. Süss J, Klaus C, Gerstengarbe FW, Werner PC. What Makes Ticks Tick? Climate Change, Ticks, and Tick-Borne Diseases. J Travel Med 2008; 15(1):39-45. http://dx.doi.org/10.1111/j.1708-8305.2007.00176.x
  24. Tomkins JL, Aungier J, Hazel W, Gilbert L. Towards an Evolutionary Understanding of Questing Behaviour in the Tick Ixodes ricinus. PLoS ONE 2014; 9(10):e110028. URL disponible en http://www.plosone.org/article/fetchObject.action?uri=info:doi/10.1371/journal.pone.0110028&representation=PDF
  25. Hoch T, Monnet Y, Agoulon A. Influence of host migration between woodland and pasture on the population dynamics of the tick Ixodes ricinus: A modelling approach. Ecol Model 2010; 221(15):1798-1806. http://dx.doi.org/10.1016/j.ecolmodel.2010.04.008
  26. Navas Panadero A. Importancia de los sistemas silvopastoriles en la reduccián del estrés calárico en sistemas de produccián ganadera tropical. Revista de Medicina Veterinaria 2010; 19:113-122. URL disponible en: http://revistas.lasalle.edu.co/index.php/mv/article/view/782/691
  27. Alonso-Carné J, García-Martín A, Estrada-Pe-a A. Assessing the statistical relationships among water-derived climate variables, rainfall, and remotely sensed features of vegetation: implications for evaluating the habitat of ticks. Exp Appl Acarol 2015; 65(1):107-24. http://dx.doi.org/10.1007/s10493-014-9849-0
  28. Langrová I, Jankovská I, Vadlejc, J, Libra M, Lytvynets A , Makovcová K. The influence of desiccation and UV radiation on the development and survival of free-living stages of cyathostomins under field and laboratory conditions. Helminthologia 2008; 45(1):32-40. http://dx.doi.org/10.2478/s11687-008-0006-3
  29. Murata Y, Osakabe M. The Bunsen−Roscoe reciprocity law in ultraviolet-B-induced mortality of the two-spotted spider mite Tetranychus urticae. J Insect Physiol 2013; 59(3):241-247. http://dx.doi.org/10.1016/j.jinsphys.2012.11.008
  30. Paul ND, Gwynn-Jones D. Ecological roles of solar UV radiation: towards an integrated approach. Trends Ecol Evol 2003; 18(1):48-55. http://dx.doi.org/10.1016/S0169-5347(02)00014-9

Sistema OJS 3.4.0.3 - Metabiblioteca |