Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Performance of different biofilters in a recirculating system for rainbow trout farming

Performance of different biofilters in a recirculating system for rainbow trout farming



Abrir | Descargar

Cómo citar
Sánchez O, I., Revelo R, D., Burbano M, Álvaro, García C, R., Guerrero R, C., Beltrán T, D., & Benavides M, L. (2016). Performance of different biofilters in a recirculating system for rainbow trout farming. Revista MVZ Córdoba, 21(2), 5426-5440. https://doi.org/10.21897/rmvz.608

Dimensions
PlumX
Iván Sánchez O
Dolly Revelo R
Álvaro Burbano M
Roberto García C
Camilo Guerrero R
Diana Beltrán T
Luis Benavides M

Objective. To evaluate the performance of different biofilters in a recirculating aquaculture system (RAS) for trout farming. Materials and methods. It was used a 1m3 plastic tank for fries farming; fabric bags to solids retention; a submersible pump; a constant water level and flow distribution box; six up flow biofilters in 3” PVC tube; sand of D10=0.45mm as carrier. The reactors were operated at local temperature and with hydraulic retention time (HRT) of 11 min, the biofilters were inoculated in the next way: R1-Control: RAS water; R2-Fish culture farm sludges; R3- Water from aerated lagoon of Antanas landfill (AL); R4-Aquarium sediments; R5- Aerated lagoon of AL sludges; R6-Sludges from sulfidogenic reactor of AL. The weight gain (WG) and the food conversion (FC) were evaluated, some physic-chemical parameters were monitored and the nitrogen and suspended solids removal efficiency were evaluated. Results. The WG of the cultured animals was 1.58 g/d and the FC was 1.41. There were no differences for ammonium and nitrite removal between the reactors; the average removal efficiencies were: ammonium 4.78%, nitrite 27.2%, nitrate 32.3%, suspended solids 37.5%; R4 and R5 reactors presented the best performance on nitrate removal, with average efficiencies of 47.4% and 42.8%. R3 presented the best SS removal with an average of 58.2%. Conclusions. The RAS water treatment system guaranteed appropriated liquid quality conditions for trout farming; the most efficient reactor for removal of the different forms of nitrogen was the inoculated with the aerated lagoon of AL sludges.

RESUMEN Objetivo. Evaluar el desempeño de diferentes biofiltros en un sistema de recirculación (SRA) para cultivo de trucha arcoiris. Materiales y métodos. Se utilizó: un tanque de 1m3 para cultivo de alevines, bolsas de lienzo para retención de sólidos, bomba sumergible, caja de nivel constante y distribución de flujo, seis biofiltros en tubo de PVC de 3”, arena con D10=0.45mm como medio soporte. Los biofiltros se operaron a temperatura ambiente y con tiempo de retención hidráulica (TRH) de 11 min, se inocularon así: R1-Control: Aguas del SRA; R2-Lodos estación piscícola; R3-Agua Laguna aireada relleno sanitario Antanas (RSA); R4-Sedimentos acuarios; R5-Lodos laguna aireada RSA; R6-Lodos reactor sulfidogénico RSA. Se evaluó la ganancia de peso (GP) y la conversión alimenticia (CA), se monitorearon parámetros físico-químicos y se evaluó la eficiencia de remoción de nitrógeno y sólidos suspendidos. Resultados. La GP de los animales fue de 1.58 g/d y la CA de 1.41. No hubo diferencias para remoción de amonio ni nitritos entre reactores; las eficiencias medias de remoción fueron: amonio 4.78%, nitrito 27.2%, nitrato 32.3%, sólidos suspendidos 37.5%. Los reactores R4 y R5 presentaron mejor remoción de nitratos, con eficiencias medias de 47.4% y 42.8%. El R3 reportó la mejor remoción de SS con promedio del 58.2%. Conclusiones. El sistema de tratamiento del agua en el SRA garantizó condiciones de calidad del líquido, apropiadas para el cultivo de la trucha; el reactor más eficiente para la remoción de las formas de nitrógeno evaluadas fue el inoculado con lodos de la laguna aireada del RSA.


Visitas del artículo 1094 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Ministerio de Agricultura y Desarrollo Rural. Agenda prospectiva de investigacián y desarrollo tecnolágico para la cadena productiva de la trucha arcoíris en el departamento de Antioquia. Bogotá, D.C., Colombia: Giro Editores Ltda; 2010.
  2. Timmons MB, Ebeling JM. Recirculating Aquaculture. 2nd ed. Ithaca, NY: Northeastern Regional Aquaculture Center; 2010.
  3. Summerfelt S, Davidson J, Waldrop T, Tsukuda S, Bebak-Williams J. A partial-reuse system for coldwater aquaculture. Aquacult Eng 2004; 31:157-181. http://dx.doi.org/10.1016/j.aquaeng.2004.03.005
  4. Summerfelt S, Sharrer M, Gearheart M, Gillette K, Vinci B. Evaluation of partial water reuse systems used for Atlantic salmon smolt production at the White River National Fish Hatchery. Aquacult Eng 2009; 41:78-84. http://dx.doi.org/10.1016/j.aquaeng.2009.06.003
  5. Liu Y, Huang Z, Song X, Lei J, Peng L, Liu B. Structure optimization of CycloBio fluidized sand biofilters based on numerical simulation. Aquacult Eng 2015; 69:18−22. http://dx.doi.org/10.1016/j.aquaeng.2015.08.004
  6. Tsukuda S, Christianson L, Kolb A, Saito K, Summerfelt S. Heterotrophic denitrification of aquaculture effluent using fluidized sand biofilters. Aquacult Eng 2015; 64:49−59.
  7. http://dx.doi.org/10.1016/j.aquaeng.2014.10.010
  8. Gutierrez-Wing MT, Malone RF. Biological filters in aquaculture: Trends and research directions for freshwater and marine applications. Aquacult Eng 2006; 34:163-171. http://dx.doi.org/10.1016/j.aquaeng.2005.08.003
  9. Pedersen L-F, Suhr KI, Dalsgaard J, Pedersen PB, Arvin E. Effects of feed loading on nitrogen balances and fish performance in replicated recirculating aquaculture systems. Aquaculture 2012; 338-341: 237-245. http://dx.doi.org/10.1016/j.aquaculture.2012.01.035
  10. Davidson J, Good C, Welsh C, Summerfelt S. The effects of ozone and water Exchange rates on water quality and rainbow trout Oncorhynchus mykiss performance in replicated water reuse systems. Aquacult Eng 2011; 44: 80-96. http://dx.doi.org/10.1016/j.aquaeng.2011.04.001
  11. Malone RF, Pfeiffer TJ. Rating fixed film nitrifying biofilters used in recirculating aquaculture systems. Aquacult Eng 2006; 34(3):389−402. http://dx.doi.org/10.1016/j.aquaeng.2005.08.007
  12. Pedersen L, Oosterveld R, Pedersen P. Nitrification performance and robustness of fixed and moving bed biofilters having identical carrier elements. Aquacult Eng 2015; 65:37−45. http://dx.doi.org/10.1016/j.aquaeng.2014.10.005
  13. Wik TEI, Lindén BT, Wramner PI. Integrated dynamic aquaculture and wastewater treatment modelling for recirculating aquaculture systems. Aquaculture 2009; 287:361-370. http://dx.doi.org/10.1016/j.aquaculture.2008.10.056
  14. Crab R, Avnimelech Y, Defoirdt T, Bossier P, Verstraete W. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture 2007; 270(1-4):1-14. http://dx.doi.org/10.1016/j.aquaculture.2007.05.006
  15. Schreier HJ, Mirzoyan N, Saito K. Microbial diversity of biological filters in recirculating aquaculture systems. Curr Opin Biotech 2010; 21:318-325. http://dx.doi.org/10.1016/j.copbio.2010.03.011
  16. Brockmann D, Morgenroth E. Evaluating operating conditions for outcompeting nitrite oxidizers and maintaining partial nitrification in biofilm systems using biofilm modeling and Monte Carlo filtering. Water Res 2010; 44:1995-2009. http://dx.doi.org/10.1016/j.watres.2009.12.010
  17. American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF). Standard Methods for the Examination of Water and Wastewater. 20 ed. Washington, D.C.; American Public Health Association: 1998.
  18. Shi XY, Yu HQ, Sun YJ, Huang X. Characteristics of aerobic granules rich in autotrophic ammonium-oxidizing bacteria in a sequencing batch reactor. Chem Eng J 2009; 147:102-109. http://dx.doi.org/10.1016/j.cej.2008.06.037
  19. Molinuevo B, García MC, Karakashev D, Angelidaki I. Anammox for ammonia removal from pig manure effluents: Effect of organic matter content on process performance. Bioresource Technol 2009; 100:2171-2175. http://dx.doi.org/10.1016/j.biortech.2008.10.038
  20. Thabet OBD, Bouallagui H, Cayol J-L, Ollivier B, Fardeau M-L, Hamdi M. Anaerobic degradation of landfill leachate using an upflow anaerobic fixed-bed reactor with microbial sulfate reduction. J Hazard Mater 2009; 167:1133-1140. http://dx.doi.org/10.1016/j.jhazmat.2009.01.114
  21. Das BM. Fundamentos de engenharia geotécnica. São Paulo, Brasil: Cengage Learning; 2011.
  22. Lekang OI. Aquaculture Engineering. Oxford: Blackwell Publishing; 2007. http://dx.doi.org/10.1002/9780470995945
  23. Good C, Davidson J, Welsh C, Brazil B, Snekvik K, Summerfelt S. The impact of water exchange rate on the health and performance of rainbow trout Oncorhynchus mykiss in water recirculation aquaculture systems. Aquaculture 2009; 294:80-85. http://dx.doi.org/10.1016/j.aquaculture.2009.05.014
  24. Mocanu M, Cristea V, Dediu L, Desimira D, Docan A, Ionescu T. The influence of different stocking densities on growth performances of oncorhynchus mykiss (Walbaum, 1792) in a recirculating aquaculture system. Lucrari Ştiinţifice - Seria Zootehnie 2011; 56:326-331.
  25. d'Orbcastel ER, Person-Le Ruyet J, Le Bayon N, Blancheton JP. Comparative growth and welfare in rainbow trout reared in recirculating and flow through rearing systems. Aquacult Eng 2009; 40:79−86. http://dx.doi.org/10.1016/j.aquaeng.2008.11.005
  26. van Rijn J. Waste treatment in recirculating aquaculture systems. Aquacult Eng 2013; 53:49−56. http://dx.doi.org/10.1016/j.aquaeng.2012.11.010
  27. Fracalossi DM, Cyrino JE. Nutriaqua: Nutrição e alimentação de espécies de interesse para a aquicultura Brasileira. Florianápolis, Brasil: Sociedade Brasileira de Aquicultura e Biologia Aquática; 2013.
  28. Rusten B, Eikebrokk B, Ulgenes Y, Lygren E. Design and operations of the kaldnes moving bed biofilm reactors. Aquacult Eng 2006; 34:322-331. http://dx.doi.org/10.1016/j.aquaeng.2005.04.002
  29. Magerhans A, Hörstgen-Schwark G. Selection experiments to alter the sex ratio in rainbow trout (Oncorhynchus mykiss) by means of temperature treatment. Aquaculture 2010; 306:63−67. http://dx.doi.org/10.1016/j.aquaculture.2010.05.015
  30. Suhr K, Pedersen P. Nitrification in moving bed and fixed bed biofilters treating effluent water from a large commercial outdoor rainbow trout RAS. Aquacult Eng 2010; 42:31&min37
  31. Van Kessel MAHJ, Harhangi HR, Van de Pas-Schoonen K, Van De Vossenberg J, Flik G, Jetten MSM, Klaren PHM, Op Den Camp HJM. Biodiversity of N-cycle bacteria in nitrogen removing moving bed bifilters for freshwater recirculating aquaculture systems. Aquaculture 2010; 306: 177-184. http://dx.doi.org/10.1016/j.aquaculture.2010.05.019
  32. Krishnani KK. Detection and diversity of nitrifying and denitrifying functional genes in coastal aquaculture. Aquaculture 2010; 302: 57-70. http://dx.doi.org/10.1016/j.aquaculture.2010.01.024
  33. Spellman FR. Handbook of water and wastewater treatment plant operators. Second edition. Boca Raton, USA: CRC Press; 2009.
  34. Von Sperling M. Introduccián a la calidad del agua y al tratamiento de aguas residuales - Principios del tratamiento biolágico de aguas residuales, Vol. 1. 1ª edicián en espa-ol. Pasto, Colombia: Editorial Universitaria Universidad de Nari-o; 2012.

Sistema OJS 3.4.0.3 - Metabiblioteca |