Detección de anticuerpos anti-Mycobacterium avium subsp. paratuberculosis en bovinos de hatos lecheros de trópico bajo en Colombia

Contenido principal del artículo

Autores

Nathalia María del Pilar Correa-Valencia https://orcid.org/0000-0001-8836-8827 Ferney Arango-Lezcano Jorge Arturo Fernández-Silva https://orcid.org/0000-0001-7248-5420

Resumen

Objetivo. Reportar la frecuencia de la seropositividad a Mycobacterium avium subsp. paratuberculosis (MAP) y explorar los factores asociados al resultado positivo, tanto a nivel de hato como de animal. Materiales y métodos. Se llevó a cabo un estudio transversal en 204 vacas lecheras resultado del cruce de diferentes razas, en cinco hatos de zonas de trópico bajo ubicadas en tres municipios de los departamentos de Sucre y Córdoba (Colombia) en 2018. Los animales fueron seleccionados aleatoriamente y se colectaron muestras de sangre de cada uno. Se utilizó un kit comercial de ELISA para analizar los sueros y se exploró la asociación entre dichas variables y el resultado a ELISA (p<0.05). Resultados. El 17.2% (35/204; IC 95%: 12.0-22.3%) de las vacas resultaron positivas a MAP mediante la prueba de ELISA, y los cinco hatos tuvieron animales seropositivos. La variable a nivel de hato presencia de otros rumiantes en copastoreo con el ganado bovino en los últimos 2 años y las variables a nivel de animal edad y paridad se encontraron asociados con los resultados positivos de ELISA. Conclusiones. En el presente estudio se encontró que el 17.2% de las vacas y el 100% de los hatos fueron positivos a MAP mediante la prueba de ELISA. Adicionalmente se identificaron variables asociadas que pueden ser de interés tanto para los productores como para los veterinarios y orientar su enfoque para el manejo de la enfermedad.

Palabras clave:

Detalles del artículo

Referencias

1. Fecteau ME. Paratuberculosis in cattle. Vet Clin North Am Food Anim Pract. 2018; 34(1):209-222. https://doi.org/10.1016/j.cvfa.2017.10.011.

2. Sweeney RW, Whitlock RH, Rosenberger AE. Mycobacterium paratuberculosis isolated from foetuses of infected cows not manifesting signs of the disease. Am J Vet Res. 1992; 53:477-480. https://doi.org/10.1016/j.cvfa.2011.07.012

3. Atreya R, Bülte M, Gerlach GF, Goethe R, Hornef MW, Köhler H, et al. Facts, myths and hypotheses on the zoonotic nature of Mycobacterium avium subspecies paratuberculosis. Int J Med Microbiol. 2014; 304(7):858–867. https://doi.org/10.1016/j.ijmm.2014.07.006.

4. Kuenstner JT, Naser S, Chamberlin W, Borody T, Graham DY, McNees A, et al. The Consensus from the Mycobacterium avium ssp. paratuberculosis (MAP) Conference 2017. Front Public Heal. 2017; 5:1–5. https://doi.org/10.3389/fpubh.2017.00208.

5. McAloon CG, Roche S, Ritter C, Barkema HW, Whyte P, More SJ, et al. A review of paratuberculosis in dairy herds — Part 1: Epidemiology. Vet. J 2019; 246:59–65. https://doi.org/10.1016/j.tvjl.2019.01.010

6. McAloon CG, Whyte P, More SJ, Green MJ, O’Grady L, Garcia A, et al. The effect of paratuberculosis on milk yield—A systematic review and meta-analysis. J Dairy Sci. 2016; 99(2):1449–1460. https://doi.org/10.3168/jds.2015-10156.

7. Nielsen SS, Toft N. A review of prevalences of paratuberculosis in farmed animals in Europe. Prev Vet Med. 2009; 88(1):1–14. https://doi.org/10.1016/j.prevetmed.2008.07.003.

8. Barkema HW, Orsel K, Nielsen SS, Koets AP, Rutten VPMG, Bannantine JP, et al. Knowledge gaps that hamper prevention and control of Mycobacterium avium subspecies paratuberculosis infection. Transbound Emerg Dis. 2017; 65(1):125-148. https://doi.org/10.1111/tbed.12723.

9. Correa-Valencia N, García-Tamayo YM, Fernández-Silva JA. Mycobacterium avium subsp. paratuberculosis in Colombia (1924-2016): A review. Rev Colomb Cienc Pecu 2018; 31(3):165-179. https://doi.org/10.17533/udea.rccp.v31n3a01
10. Fernández-Silva JA, Correa-Valencia NM, Ramírez NF. Systematic review of the prevalence of paratuberculosis in cattle, sheep, and goats in Latin America and the Caribbean. Trop Anim Health Prod. 2014; 46(8):1321–1340. https://doi.org/10.1007/s11250-014-0656-8.

11. Galeano AP, Manrique C. Estimación de parámetros genéticos para caracteristicas productivas y reproductivas en los sistemas doble propósito del trópico bajo colombiano. Rev la Fac Med Vet y Zootec. 2010; 57(2):119–131. https://revistas.unal.edu.co/index.php/remevez/article/view/17342/18179

12. Holmann F, Rivas L, Carulla J, Rivera B, Giraldo LA, Guzmán S, et al. Producción de leche y su relación con los mercados; caso colombiano. CIAT. 2004; 1–80. http://ciat-library.ciat.cgiar.org/Articulos_Ciat/tropileche/books/Produccion_leche_relacion_mercados_caso_Colombia.pdf

13. DANE. Departamento Administrativo Nacional de Estadística. Colombia. Censo Nacional Agropecuario, 2014. https://www.dane.gov.co/files/images/foros/foro-de-entrega-de-resultados-y-cierre-3-censo-nacional-agropecuario/CNATomo2-Resultados.pdf

14. Espinal LS. Zonas de vida o formaciones vegetales de Colombia: Mapa geológico. Memoria explicativa sobre el mapa ecológico, Bogotá (Colombia). Instituto Geográfico Agustín Codazzi (IGAC) 1977. Vol. 11-13, 238 pp.

15. IDEAM. Instituto de hidrología, meteorología y estudios ambientales, Colombia. Mapas y gráficos del tiempo y el clima, 2018. http://institucional.ideam.gov.co/jsp/mapas-y-graficos-del-tiempo-y-el-clima_882

16. Toda Colombia, 2019. https://www.todacolombia.com/departamentos-de-colombia/sucre/clima.html

17. Toda Colombia, 2019. https://www.todacolombia.com/departamentos-de-colombia/cordoba/clima.html

18. Stevenson K. Diagnosis of Johne’s disease: Current limitations and prospects. Cattle Pract. 2010; 18:104–109. http://scholar.google.com.co/scholar_url?url=ftp://173.183.201.52/Inetpub/wwwroot/DairyScience/Resources/JD/CP18_104.pdf&hl=es&sa=X&scisig=AAGBfm3CHCQwE8cxHPdq0j1-oJv5h-PJ9g&nossl=1&oi=scholarr

19. Alinovi CA, Ward MP, Lin TL, Wu CC. Sample handling substantially affects Johne’s ELISA. Prev Vet Med. 2009; 90(3–4):278–283. https://doi.org/10.1016/j.prevetmed.2009.04.004.

20. Münster P, Völkel I, Wemheuer W, Schwarz D, Döring S, Czerny CP. A longitudinal study to characterize the distribution patterns of Mycobacterium avium ssp. paratuberculosis in semen, blood and faeces of a naturally infected bull by IS900 semi-nested and quantitative real-time PCR. Transbound Emerg Dis. 2013; 60(2):175–187. https://doi.org/10.1111/j.1865-1682.2012.01336.x.

21. Barrett DJ, Mee JF, Mullowney P, Good M, McGrath G, Clegg T, et al. Risk factors associated with Johne's disease test status in dairy herds in Ireland. Vet Rec. 2011; 168(15):0–2. https://doi.org/10.1136/vr.c6866.

22. Whittington RJ, Taragel CA, Ottaway S, Marsh I, Seaman J, Fridriksdottir V. Molecular epidemiological confirmation and circumstances of occurrence of sheep (S) strains of Mycobacterium avium subsp. paratuberculosis in cases of paratuberculosis in cattle in Australia and sheep and cattle in Iceland. Vet Microbiol. 2001; 79(4):311–322. https://doi.org/10.1016/S0378-1135(00)00364-3

23. Eisenberg SWF, Veldman E, Rutten VPMG, Koets AP. A longitudinal study of factors influencing the result of a Mycobacterium avium ssp. paratuberculosis antibody ELISA in milk of dairy cows. J Dairy Sci. 2015; 98(4):2345–2355. https://doi.org/10.3168/jds.2014-8380.

24. Laurin EL, Sanchez J, Chaffer M, McKenna SLB, Keefe GP. Assessment of the relative sensitivity of milk ELISA for detection of Mycobacterium avium ssp. paratuberculosis infectious dairy cows. J Dairy Sci. 2017; 100(1):598–607. https://doi.org/ 10.3168/jds.2016-11194.

Descargas

La descarga de datos todavía no está disponible.