Efecto citotóxico de Deoxinivalenol sobre la proliferación de la línea celular HepG2

##plugins.themes.bootstrap3.article.main##

Harold Duván Garzón-González
Nancy Jaimes-Mendez
Liliana Rojas-Contreras
Siham Salmen-Halabi
Manuel Alejandro Gil-Durán
Resumen

Objetivo. Determinar el efecto citotóxico e inducción de la apoptosis de Deoxinivalenol (DON) sobre la línea celular de hepatocarcinoma humano (HepG2). Materiales y métodos. La línea celular HepG2 se expuso a concentraciones de 10, 25, 50 y 75 µM de DON liofilizado durante 48 y 72 horas. Posteriormente, la actividad citotóxica de DON se evaluó empleando el ensayo MTT (bromuro de 3-(4,5-dimetil-2-tiazolil) -2, 5-difeniltetrazolio). Finalmente, se analizaron los cambios morfológicos propios de la apoptosis en las células HepG2 por microscopía electrónica de transmisión, después del tratamiento con 50 μM de DON durante 48 horas. Resultados. DON, afecta la actividad metabólica y proliferación de las células HepG2 por encima de los 10 µM, en comparación con el control. La concentración inhibitoria media (CI50) de DON sobre las células HepG2, fue de 42.8 µM DE±1.2 y de 29.6 µM DE±3.1 a las 48 horas y 72 horas de tratamiento, respectivamente. Se observaron características morfológicas de la apoptosis en las células HepG2, como la fragmentación nuclear y celular, invaginación de la membrana plasmática y formación de los cuerpos apoptóticos. Conclusiones. DON, es un agente citotóxico sobre las células HepG2 que altera la actividad metabólica celular, con un efecto antiproliferativo significativo de manera dependiente a la concentración y al tiempo de exposición, e induce la muerte celular apoptótica.

Palabras clave

Descargas

Los datos de descargas todavía no están disponibles.

##plugins.themes.bootstrap3.article.details##

Biografía del autor/a / Ver

Harold Duván Garzón-González, Universidad de Pamplona, Pamplona, Colombia.

Harold Duván Garzón González

biogar27@gmail.com

Universidad de Pamplona, Facultad de Ciencias Básicas, Departamento de Biología, Grupo de Investigación en Biología Molecular y Genética (BIOMOGEN),  Pamplona, Colombia.

Nancy Jaimes-Mendez, Universidad de Pamplona. Pamplona,  Colombia.

Nancy Jaimes Méndez

Universidad de Pamplona, Facultad de Ciencias Básicas, Departamento de Biología, Grupo de Investigación en Biología Molecular y Genética (BIOMOGEN),  Pamplona,  Colombia.

Liliana Rojas-Contreras, Universidad de Pamplona, Pamplona, Colombia.

Liliana Rojas Contreras

olrojas@unipamplona.edu.co

Universidad de Pamplona, Facultad de Ciencias Básicas, Departamento de Microbiología, Grupo de Investigación en Microbiología y Biotecnología (GIMBIO),  Pamplona, Colombia.

 

Siham Salmen-Halabi, Universidad de Los Andes, Mérida, Venezuela

Siham Salmen Halabi

Salmensiham9@gmail.com

Universidad de Los Andes, Facultad de Medicina, Instituto de Inmunología Clínica (IDIC), Edificio Louis Pasteur, Av 16 de Septiembre Sector Campo de Oro, Mérida, Venezuela

Manuel Alejandro Gil-Durán, Universidad de Pamplona, Pamplona, Colombia.

Manuel Alejandro Gil Durán

alejandrogild@gmail.com 

Universidad de Pamplona, Facultad de Ciencias Básicas, Departamento de Matemáticas, Grupo de Investigación en Biología Molecular y Genética (BIOMOGEN), Km 1 Vía Bucaramanga, Ciudad Universitaria, Pamplona, Colombia.

Referencias / Ver

Mayer E, Novak B, Springler A, Schwartz-Zimmermann H, Nagl V, Reisinger N, et al. Effects of deoxynivalenol (DON) and its microbial biotransformation product deepoxy-deoxynivalenol (DOM-1) on a trout, pig, mouse, and human cell line. Mycotoxin Res. 2017; 33(4):297–308. https://link.springer.com/article/10.1007/s12550-017-0289-7

Pestka J. Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol. World Mycotoxin J. 2010; 3(4):323–347. https://doi.org/10.3920/WMJ2010.1247

Pinton P, Tsybulskyy D, Lucioli J, Laffitte J, Callu P, Lyazhri F, et al. Toxicity of deoxynivalenol and its acetylated derivatives on the intestine: Differential effects on morphology, barrier function, tight junctions proteins and MAPKinases. Toxicol Sci. 2012; 130(1):180–190. https://www.ncbi.nlm.nih.gov/pubmed/22859312

Ren Z, Wang Y, Deng H, Deng Y, Deng J, Zuo Z, et al. Deoxynivalenol induces apoptosis in chicken splenic lymphocytes via the reactive oxygen species-mediated mitochondrial pathway. Environ Toxicol Pharmacol. 2015; 39(1):339–346. https://www.ncbi.nlm.nih.gov/pubmed/25553575

Arunachalam C, Doohan F. Trichothecene toxicity in eukaryotes: Cellular and molecular mechanisms in plants and animals. Toxicol Lett. 2013; 217(2):149– 158. https://www.ncbi.nlm.nih.gov/pubmed/23274714

Wu F, Groopman F, Pestka J. Public Health Impacts of Foodborne Mycotoxins. Annu Rev Food Sci Technol. 2014; 5:351–372. https://www.ncbi.nlm.nih.gov/pubmed/24422587

Liao Y, Peng Z, Chen L, Nüssler A, Liu L, Yang W. Deoxynivalenol, gut microbiota and immunotoxicity: A potential approach? Food Chem Toxicol. 2018; 112:342–354. https://www.ncbi.nlm.nih.gov/pubmed/29331731

Pistritto G, Trisciuoglio D, Ceci C, Garufi A, D’Orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging. 2016; 8(4):603–619. https://dx.doi.org/10.18632%2Faging.100934

Gordeziani M, Adamia G, Khatisashvili G, Gigolashvili G. Programmed cell self-liquidation (apoptosis). Annals of Agrarian Science. 2017;15(1):148–154. https://www.sciencedirect.com/science/article/pii/S151218871630029X

Redza M, Averill D. Activation of apoptosis signalling pathways by reactive oxygen species. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2016; 1863(12):2977–2992. https://doi.org/10.1016/j.bbamcr.2016.09.012

Pestka J. Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol. World Mycotoxin J. 2010; 3(4):323–347. https://doi.org/10.3920/WMJ2010.1247

Oshikata A, Takezawa, T. Development of an oxygenation culture method for activating the liver-specific functions of HepG2 cells utilizing a collagen vitrigel membrane chamber. Cytotechnology. 2015; 68(5):1801–1811. https://doi.org/10.1007/s10616-015-9934-1

Pinton P, Oswald I. Effect of Deoxynivalenol and Other Type B Trichothecenes on the Intestine: A Review. Toxins. 2014; 6(5):1615-1643. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4052256/

Juan A, Berrada H, Font G, Ruiz M. Evaluation of acute toxicity and genotoxicity of DON, 3-ADON and 15-ADON in HepG2 cells. Toxicology Letters. 2017; 280S: S254-S266.

Kupcsik L. Estimation of Cell Number Based on Metabolic Activity: The MTT Reduction Assay. Mammalian Cell Viability. Methods Mol Biol. 2011; 740:13–19. https://doi.org/10.1007/978-1-61779-108-6_3

Jaimes N, Salmen S, Colmenares M, Burgos A, Tamayo L, Mendoza V, et al. Efecto citotóxico de los compuestos de inclusión de paladio (II) en la beta-ciclodextrina. Biomédica. 2016; 36(4):603-611. https://doi.org/10.7705/biomedica.v36i4.2880

Dinu D, Bodea G, Ceapa C, Munteanu M, Roming F, Serban A, et al. Adapted response of the antioxidant defense system to oxidative stress induced by deoxynivalenol in Hek-293 cells. Toxicon. 2011; 57(7-8):1023–1032. https://doi.org/10.1016/j.toxicon.2011.04.006

Alassane I, Kolf M, Gauthier T, Abrami R, Abiola F, Oswald I. New insights into mycotoxin mixtures: the toxicity of low doses of Type B trichothecenes on intestinal epithelial cells is synergistic. Toxicol Appl Pharmacol. 2013; 272(1):191–198. https://doi.org/10.1016/j.taap.2013.05.023

Fernández C, Elmo L, Waldner T, Ruiz M. Cytotoxic effects induced by patulin, deoxynivalenol and toxin T2 individually and in combination in hepatic cells (HepG2). Food Chem Toxicol. 2018; 120:12–23. https://doi.org/10.1016/j.fct.2018.06.019

Lei Y, Guanghui Z, Xi W, Yingting W, Xialu L, Fangfang Y, et al. Cellular responses to T-2 toxin and/or deoxynivalenol that induce cartilage damage are not specific to chondrocytes. Sci Rep. 2017; 7(2231):1-14. https://www.nature.com/articles/s41598-017-02568-5

Mikami O, Yamaguchi H, Murata H, Nakajima Y, Miyazaki S. Induction of apoptotic lesions in liver and lymphoid tissues and modulation of cytokine mRNA expression by acute exposure to deoxynivalenol in piglets. J Vet Sci. 2010; 11(2):107-113. https://dx.doi.org/10.4142%2Fjvs.2010.11.2.107

Ma Y, Zhang A, Shi Z, He C, Ding J, Wang X, et al. A mitochondria-mediated apoptotic pathway induced by deoxynivalenol in human colon cancer cells. Toxicol in Vitro. 2012; 26(3):414–420. https://doi.org/10.1016/j.tiv.2012.01.010

Citado por