Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Factores técnicos del manejo de la calidad agua y sedimento en policultivo camarón-tilapia en estanques

Technical factors of water quality and sediment management in shrimp-tilapia polyculture in ponds



Cómo citar
Juárez-Rosales, J. J., Ponce-Palafox, J., Román-Gutiérrez, A. D., Otazo-Sánchez, E. M., Pulido-Flores, G., Marmolejo-Santillán, Y., Tapia-Varela, R., & Benítez-Mandujano, M. A. (2021). Factores técnicos del manejo de la calidad agua y sedimento en policultivo camarón-tilapia en estanques. Revista MVZ Córdoba, 27(1), e2147. https://doi.org/10.21897/rmvz.2147

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Jorge J Juárez-Rosales
Jesus Ponce-Palafox
Alma D. Román-Gutiérrez
Elena M. Otazo-Sánchez
Griselda Pulido-Flores
Yolanda Marmolejo-Santillán
Raúl Tapia-Varela
Mario A Benítez-Mandujano

Jorge J Juárez-Rosales,

Jorge Juárez-Rosales

Universidad Autónoma del Estado de Hidalgo Instituto de Ciencias Básicas e Ingeniería, Área Académica de Química. Posgrado en Ciencias Ambientales. Pachuca Hidalgo, México.

ju372106@uaeh.edu.mx

https://orcid.org/0000-0002-0837-6681


Jesus Ponce-Palafox,

Jesus T. Ponce-Palafox

Universidad Autónoma de Nayarit. Escuela Nacional de Ingeniería Pesquera. Laboratorio de Bioingeniería Costera. Nayarit, México.

jtpp22@gmail.com

https://orcid.org/0000-0002-1088-7114


Alma D. Román-Gutiérrez,

Alma D. Román-Gutiérrez

Universidad Autónoma del Estado de Hidalgo Instituto de Ciencias Básicas e Ingeniería, Área Académica de Química. Posgrado en Ciencias Ambientales. Pachuca Hidalgo, México.

aroman@uaeh.edu.mx

https://orcid.org/0000-0003-0927-1061


Elena M. Otazo-Sánchez,

Elena M. Otazo-Sánchez

Universidad Autónoma del Estado de Hidalgo Instituto de Ciencias Básicas e Ingeniería, Área Académica de Química. Posgrado en Ciencias Ambientales. Pachuca Hidalgo, México.

elenamariaotazo@gmail.com

https://orcid.org/0000-0001-9324-8926

 

 

 


Griselda Pulido-Flores,

Griselda Pulido-Flores

Universidad Autónoma del Estado de Hidalgo Instituto de Ciencias Básicas e Ingeniería, Área Académica de Química. Posgrado en Ciencias Ambientales. Pachuca Hidalgo, México.

gpulido@uaeh.edu.mx

https://orcid.org/0000-0002-0454-8466


Yolanda Marmolejo-Santillán,

Yolanda Marmolejo-Santillán

Universidad Autónoma del Estado de Hidalgo Instituto de Ciencias Básicas e Ingeniería, Área Académica de Química. Posgrado en Ciencias Ambientales. Pachuca Hidalgo, México.

llola56@yahoo.com.mx

https://orcid.org/0000-0002-0567-0703

 

 


Raúl Tapia-Varela,

Raúl Tapia-Varela

Universidad Autónoma de Nayarit. Escuela Nacional de Ingeniería Pesquera. Laboratorio de Bioingeniería Costera. Nayarit, México.

raultapia539@hotmail.com

https://orcid.org/0000-0003-1561-1595


Mario A Benítez-Mandujano,

Mario A. Benítez-Mandujano

Universidad Juárez de Tabasco. Unidad de los Ríos, Tenosique, Tabasco, México.

mario.benitez@ujat.mx

https://orcid.org/0000-0002-4040-6262


El policultivo de camarón-tilapia es una de las estrategias de mitigación para los impactos sanitarios y los efluentes en las granjas camaroneras. Su finalidad principal es incrementar la producción y controlar la calidad del agua de sus efluentes. En casos de éxito se controlaron algunas enfermedades y mejoró la calidad del suelo en estanques de tierra. En esta revisión, se analizan los beneficios que se obtienen en la calidad del agua, sedimento, medio ambiente, incremento del rendimiento y el mejoramiento de los parámetros zootécnicos de camarones co-cultivados con tilapia. Los policultivos de camarón-tilapia pueden contribuir con un efecto positivo sobre la calidad del agua y sedimentos de los estanques y efluentes de las granjas de cultivo, lo cual depende de las condiciones de densidad y ambiente donde se desarrollan. Sin embargo, se requiere adaptar y demostrar su funcionalidad y rentabilidad comercial a pequeña escala e industrialmente.


Visitas del artículo 1546 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Deepak AP, Vasava RJ, Elchelwar VR, Tandel DH, Vadher KH, Shrivastava V, et al. Aquamimicry: New an innovative apporoach for sustainable development of aquaculture. J Entomol Zool Stud. 2020; 8(2):1029-1031. https://www.entomoljournal.com/archives/2020/vol8issue2/PartQ/8-2-3-251.pdf
  2. Espinosa-Plascencia A, Bermúdez-Almada MC. La acuicultura y su impacto al medio ambiente. Estud Soc. 2012; 2:221-232. https://www.ciad.mx/archivos/revista-dr/RES_ESP2/RES_Especial_2_10_Bermudez.pdf
  3. Hargan KE, Williams B, Nuangsaeng B, Siriwong S, Tassawad P, Chaiharnet C, et al. Understanding the fate of shrimp aquaculture effluent in a mangrove ecosystem: Aiding management for coastal conservation. J Appl Ecol. 2020; 57:754–765. https://doi.org/10.1111/1365-2664.13579
  4. Cardoso-Mohedano JG, Bernardello R, Sánchez-Cabeza JA, Páez-Osuna F, Ruiz-Fernández AC, Molino-Minero-Re E, et al. Reducing nutrient impacts from shrimp effluents in a subtropical coastal lagoon. Sci Total Environ. 2016; 571:388-97. https://www.sciencedirect.com/science/article/pii/S0048969716313146
  5. Mawi S, Krishnan S, Din MFMD, Arumugam N, Chelliapan S. Bioremediation potential of macroalgae Gracilaria edulis and Gracilaria changii co-cultured with shrimp wastewater in an outdoor water recirculation system. Environ Technol Inno. 2020; 17:100571. https://doi.org/10.1016/j.eti.2019.100571
  6. Hoang MN, Nguyen PN, Bossier MVEM, Bossier P. The effects of two fish species mullet, Mugil cephalus, and tilapia, Oreochromis niloticus, in polyculture with white shrimp, Litopenaeus vannamei, on system performances: A comparative study. Aquac Res. 2020; 51:2603–2612. https://doi.org/10.1111/are.14602
  7. Radulovich R, Fuentes-Quesada JP. Shrimp (Litopenaeus vannamei) artisanal production in floating cages at sea and polyculture with oyster (Crassostrea gigas). Aquaculture. 2019; 512:734354. https://doi.org/10.1016/j.aquaculture.2019.734354
  8. López-Gómez C, Ponce-Palafox JT, Castillo-Vargasmachuca S, Puga-López D, Castillo-Campo LF, García-Ulloa M. Evaluation of two mix-cultures of white shrimp (Litopenaeus vannamei) with red tilapia hybrid and spotted rose snapper (Lutjanus guttatus) in intensive indoor brackish water tanks. Lat Am J Aquat Res. 2017; 45(5):922-929. https://doi.org/10.3856/vol45-issue5-fulltext-7
  9. Buck BH, Troell MF, Krause G, Angel DL, Grote B, Chopin T. State of the art and challenges for offshore integrated multi-trophic. Aquaculture (IMTA). Front Mar Sci. 2018; 5:165. https://doi.org/10.3389/fmars.2018.00165
  10. Yi Y, Fitzsimmons K. Tilapia-shrimp polyculture in Thailand. In: Bolivar R, Mair G, Fitzsimmons K. (eds.). New dimensions in farmed tilapia. Proceedings of ISTA 6. Bureau of Fisheries and Aquatic Resources: Manila; 2004. https://cals.arizona.edu/azaqua/ista/ista6/ista6web/pdf/777.pdf
  11. Begum N, Islam M, Haque A, Suravi I. Growth and yield of monosex tilapia Oreochromis niloticus in floating cages fed commercial diet supplemented with probiotics in freshwater pond, Sylhet. Bangladesh J Zool. 2017; 45(1):27-36. https://doi.org/10.3329/bjz.v45i1.34191H
  12. Chakravartty D, Mondal A, Sundaray JK, Bhattacharyya SB, Mitra A. quality of extensive brackish water polyculture farm effluents at different production levels and its impact on the receiving environment. Int J Inn Stud Aquat Biol. 2017; 3(2):5-14 http://dx.doi.org/10.20431/2454-7670.0302002
  13. Nayak PK, Nayak AK, Panda BB, Lal B, Gautam P., Poonam M, et al. Ecological mechanism and diversity in rice based integrated farming system, Ecol Indic. 2018; 91:359-375. https://doi.org/10.1016/j.ecolind.2018.04.025
  14. Islam MR, Tabeta S. Shrimp vs prawn-rice farming in Bangladesh: A comparative impacts study on local environments and livelihoods, Ocean Coast Manag. 2019; 168:167-176. https://doi.org/10.1016/j.ocecoaman.2018.11.004
  15. Perschbacher PW, Stickney RR. Tilapia in Intensive Co-culture. by John Wiley & Sons Ltd; 2017. https://doi.org/10.1002/9781118970652
  16. Zeng S, Wei D, Hou D, Wang H, Liu J, Weng S, et al. Sediment microbiota in polyculture of shrimp and fish pattern is distinctive from those in monoculture intensive shrimp or fish ponds. Sci Total Environ. 2021; 787:147594. https://doi.org/10.1016/j.scitotenv.2021.147594
  17. Gutiérrez J, Ponce-Palafox JT, Pineda-Jaimes NB, Arenas-Fuentes V, Arredondo-Figueroa JL, et al. Comparison of the mangrove soil with different levels of disturbance in tropical Agua Brava Lagoon, Mexican Pacific. Appl Ecol Environ Res. 2016; 14(4):45-57. http://dx.doi.org/10.15666/aeer/1404_045057
  18. Li J, Liu G, Li C, Deng Y, Tadda MA, Lan L, et al. Effects of different solid carbon sources on water quality, biofloc quality and gut microbiota of Nile tilapia (Oreochromis niloticus) larvae. Aquaculture. 2018; 495:919-931. https://doi.org/10.1016/j.aquaculture.2018.06.078
  19. Hernández-Barraza CA. Evaluación del crecimiento de camarón blanco del Pacífico (Litopenaeus vannamei) en policultivo con tilapia roja (Oreochromis mossambicus x O. niloticus) bajo un sistema de recirculación de agua. Ciencia UAT. 2011; 5(3):41-45. http://www.revistaciencia.uat.edu.mx/index.php/CienciaUAT/article/view/91
  20. Wang M, Lu M. Tilapia polyculture: a global review. Aquac Res. 2016; 47(8):2363-2374. https://doi.org/10.1111/are.12708
  21. Aghuzbeni SHH, Hajirezaee S, Matinfar A, Khara H, Ghobadi MA. preliminary study on polyculture of western white shrimp (Litopenaeus vannamei) with mullet (Mugil cephalus): an assessment of water quality, growth parameters, feed intake efficiency and survival. J Appl Anim Res. 2017; 45:247-251, https://doi.org/10.1080/09712119.2016.1150845
  22. Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM. Microalgae and wastewater treatment. Saudi J Biol Scis. 2012; 19:257-275. https://doi.org/10.1016/j.sjbs.2012.04.005
  23. Park JR, Craggs RJ, Shilton AN. Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol. 2011; 102:35-42. https://doi.org/10.1016/j.biortech.2010.06.158
  24. Juárez-Rosales J. Ponce-Palafox JT, Román-Gutiérrez A, Otazo-Sánchez EM, Pulido-Flores G, Castillo-Vargasmachuca SG. Effects of white shrimp (Litopenaeus vannamei) and tilapia nilotica (Oreochromis niloticus var. Spring) in monoculture and co-culture systems on water quality parameters and production in brackish low-salinity water earthen ponds during rainy and dry seasons. Span J Agric Res. 2019; 17(3):e0605. https://doi.org/10.5424/sjar/2019173-14938
  25. Ferreira JG, Falconer L, Kittiwanich J, Ross L, Saurel C, Wellman K, et al. Analysis of production and environmental effects of Nile tilapia and white shrimp culture in Thailand. Aquaculture. 2015; (447):23–36. https://www.sciencedirect.com/science/article/pii/S0044848614004463
  26. Luo Z, Huang W, Zheng C, Li J, Yun L, Sun H, et al. Identification of a microalgae-yeast coculture system for nutrient removal in shrimp culture wastewater. J Appl Phycol. 2021; 33:879–890. https://doi.org/10.1007/s10811-021-02379-2
  27. Tendencia EA, de la Peña MR, Fermin AC, Lio-Po G. Choresca CH Jr. Antibacterial activity of tilapia Tilapia hornorum against Vibrio harveyi. Aquaculture. 2004; 232:145-152. https://doi.org/10.1016/s0044-8486(03)00531-3
  28. Paez-Osuna F, Guerrero-Galvan SR, Ruiz-Fernandez AC. Discharge of nutrients from shrimp farming to coastal waters of the Gulf of California. Mar Pollut Bull. 1999; 38:585-592. https://doi.org/10.1016/S0025-326X(98)00116-7
  29. Juárez-Rosales J, Román-Gutiérrez A, Otazo-Sánchez E, Pulido-Flores G, Esparza-Leal H, Aragón-Noriega E, et al. The effect of tilapia Oreochromis niloticus addition on the sediment of brackish low-salinity ponds to white shrimp Penaeus vannamei farming system during the wet and dry season. Lat Am J Aquat Res. 2020; 48(1):7-14. https://doi.org/10.3856/vol48-issue1-fulltext-2365
  30. Boyd CE. Inland shrimp farming and the environment. World Aquac. 2001; 32(1):10-12. https://www.globalseafood.org/advocate/inland-shrimp-farming-and-the-environment/
  31. Ponce-Palafox JT, Esparza-Leal H, Arredondo-Figueroa JL, Martinez-Palacios CA, Ross LG. The effect of protein and lipid level on the specific dynamic action and post-prandial nitrogen excretion in subadult of white shrimp Litopenaeus vannamei. Rev Biol Mar Oceanogr. 2017; 52(1):131-141. http://dx.doi.org/10.4067/S0718-19572017000100011
  32. Adámek Z, Maršálek B. Bioturbation of sediments by benthic macroinvertebrates and fish and its implication for pond ecosystems: a review. Aquac Int. 2013; 21:1-17. https://doi.org/10.1007/s10499-012-9527-3
  33. Webb JM, Quinta R, Papadimitriou S, Norman L, Rigby M, et al. Halophyte filter beds for treatment of saline wastewater from aquaculture. Water Res. 2012; 46:512-514. https://www.sciencedirect.com/science/article/pii/S0043135412004484
  34. Alam MJ, Islam ML, Tuong TP. Introducing tilapia (GIFT) with shrimp (Penaeus monodon) in brackishwater rice-shrimp system: impact on water quality and production. Bangladesh J Fish Res. 2008; 12(2):187-195. https://pdfs.semanticscholar.org/7860/784b4d3fdbcc7949f7cfc336c86c0796d04b.pdf
  35. Hernández-Barraza CA. Evaluación del crecimiento de camarón blanco del Pacífico (Litopenaeus vannamei) en policultivo con tilapia roja (Oreochromis mossambicus x O. niloticus) bajo un sistema de recirculación de agua. Ciencia UAT. 2011; 5(3):41-45. http://www.revistaciencia.uat.edu.mx/index.php/CienciaUAT/article/view/91
  36. Hernandez-Barraza C, Cantu DL, Osti JL, Fitzsimmons K, Nelson S. Productivity of polycultured Nile Tilapia (Oreochromis niloticus) and Pacific White Shrimp (Litopenaeus vannamei) in a recirculating system. Bamidgeh; 2013.
  37. Wang JQ, Li D, Dong S, Wang K, Tian X. Experimental studies on polyculture in closed shrimp ponds. Aquaculture. 1998; 163(1-2):11–27. https://doi.org/10.1016/s0044-8486(98)00165-3
  38. Alam MJ, Islam ML, Tuong TP. Introducing tilapia (GIFT) with shrimp (Penaeus monodon) in brackishwater rice-shrimp system: impact on water quality and production. Bangladesh J Fish Res. 2008; 12(2):187-195. https://aquadocs.org/bitstream/handle/1834/34227/BJFR12.2_187.pdf?sequence=1&isAllowed=y
  39. Muangkeow B, Ikejma K, Powtongsook S, Yi Y. Effects of white shrimp, Litopenaeus vannamei (Boone), and Nile tilapia, Oreochromis niloticus L., stocking density on growth, nutrient conversion rate and economic return in integrated closed recirculation system. Aquaculture. 2007; 269:363–376. https://www.sciencedirect.com/science/article/abs/pii/S0044848607002980
  40. Aghuzbeni S. H. H., Hajirezaee S., Matinfar A., Khara H. and Ghobadi M. A preliminary study on polyculture of western white shrimp (Litopenaeus vannamei) with mullet (Mugil cephalus): an assessment of water quality, growth parameters, feed intake efficiency and survival. J Appl Anim Res. 2017; 45:247-251. https://doi.org/10.1080/09712119.2016.1150845
  41. Shpigel M, Ben-Ezra D, Shauli L, Sagi M, Ventura Y, et al. Constructed wetland with Salicornia as a biofilter for mariculture effluents. Aquaculture. 2013; 412–413:52-63. https://www.sciencedirect.com/science/article/pii/S0044848613003128
  42. Martínez-Porchas M, Martínez-Cordova LR, Porchas-Cornejo M, López-Elias JA. Shrimp polyculture: a potentially, profitable, sustainable but yet uncommon aquacultural practice. Rev Aquacult. 2010; 2(2):73-85. https://doi.org/10.1111/j.1753-5131.2010.01023.x

Sistema OJS 3.4.0.3 - Metabiblioteca |