Actividad antihelmíntica in vivo de terpenos y aceites esenciales en pequeños rumiantes

Contenido principal del artículo

Autores

Rafael Arturo Torres-Fajardo https://orcid.org/0000-0001-8336-4974 Rosa Isabel Higuera-Piedrahita https://orcid.org/0000-0002-9231-1556

Resumen

Los terpenos y aceites esenciales (AcEs) poseen un amplio espectro de actividades biológicas que pueden ser exploradas en las ciencias veterinarias. En este sentido, su uso ha sido propuesto como una estrategia para enfrentar las crecientes poblaciones de nematodos gastrointestinales (NGI) resistentes a los antihelmínticos (AH) tradicionales. En la presente revisión analizamos 11 manuscritos científicos que, mediante la utilización del enfoque in vivo, evaluaron el potencial AH de plantas ricas en terpenos (PRT) o AcEs en pequeños rumiantes. La especie ovina fue utilizada en el 81% de los trabajos. Brasil es el país que lidera esta línea de investigación seguido de los Estados Unidos de América y la República de Benín. Todos los manuscritos analizados utilizaron la prueba de reducción del conteo fecal de huevos de NGI, mientras que cinco manuscritos emplearon la metodología del test —o prueba— controlado(a). La actividad de las PRT y los AcEs sobre la excreción de huevos de NGI en las heces fue variable, reportándose valores que oscilaron desde un efecto nulo hasta un 97%. Dos trabajos reportaron una reducción en el tamaño de los NGI machos adultos y en la fecundidad de las hembras tras la administración de AcEs. Resulta necesario generar más trabajos que se dirijan a entender las interacciones entre las plantas, sus metabolitos secundarios y los rumiantes que las consumen. Comprender dichas interacciones nos permitirá utilizar estos productos naturales como elementos que ayuden a mejorar la nutrición y la sanidad de ovinos y caprinos en diferentes sistemas productivos.

Palabras clave:

Detalles del artículo

Referencias

1. Mavrot F, Hertzberg H, Torgerson P. Effect of gastro-intestinal nematode infection on sheep performance: A systematic review and meta-analysis. Parasit Vectors. 2015; 8(1):1–11. http://dx.doi.org/10.1186/s13071-015-1164-z

2. Zajac AM, Garza J. Biology, Epidemiology, and Control of Gastrointestinal Nematodes of Small Ruminants. Vet Clin North Am - Food Anim Pract. 2020; 36(1):73–87. https://doi.org/10.1016/j.cvfa.2019.12.005

3. Kaplan RM, Vidyashankar AN. An inconvenient truth: global worming and anthelmintic resistance. Vet Parasitol. 2012; 186(1-2):70-78. https://doi.org/10.1016/j.vetpar.2011.11.048

4. Torres-Acosta JFJ, Mendoza-de-Gives P, Aguilar-Caballero AJ, Cuéllar-Ordaz JA. Anthelmintic resistance in sheep farms: update of the situation in the American continent. Vet Parasitol. 2012; 189(1):89-96. https://doi.org/10.1016/j.vetpar.2012.03.037

5. Scott I, Pomroy WE, Kenyon PR, Smith G, Adlington B, Moss A. Lack of efficacy of monepantel against Teladorsagia circumcinta and Trichostrongylus colubriformis. Vet Parasitol. 2013; 198(1-2):166-171. https://doi.org/10.1016/j.vetpar.2013.07.037

6. Van-de-Brom R, Moll L, Kappert C, Vellema P. Haemonchus contortus resistance to monepantel in sheep. Vet Parasitol; 2015; 209(3-4):278-280. https://doi.org/10.1016/j.vetpar.2017.09.010

7. Salles N, Love S. Resistance of Haemonchus sp. to monepantel and reduced efficacy of a derquantel / abamectin combination confirmed in sheep in NSW, Australia. Vet Parasitol. 2016; 228:193-196. https://doi.org/10.1016/j.vetpar.2016.08.016

8. Cerutti J, Cooper L, Torrents J, Suárez G, Anziani OS. Eficacia reducida de derquantel y abamectina en ovinos y caprinos con Haemonchus sp resistentes a lactonas macrocíclicas. Rev Vet. 2018; 29(1):22-25. http://dx.doi.org/10.30972/vet.2912782

9. Charlier J, Rinaldi L, Musella V, Ploeger HW, Chartier C, Rose Vineer H, et al. Initial assessment of the burden of parasitic helminth infections to the ruminant livestock industry in Europe. Prev Vet Med. 2020; 182:105103. https://doi.org/10.1016/j.prevetmed.2020.105103

10. Charlier J, van der Voort M, Kenyon F, Skuce P, Vercruysse J. Chasing helminths and their economic impact on farmed ruminants. Trends Parasitol. 2014; 30(7):361-367. https://doi.org/10.1016/j.pt.2014.04.009

11. Torres-Acosta JFJ, Hoste H, Sandoval-Castro CA, Torres-Fajardo RA, Ventura-Cordero J, González-Pech PG, et al. The art of war against gastrointestinal nematodes in sheep and goat herds of the tropics. Rev Acad (Pontif Univ Catól Paraná, Online). 2019; 17(1):39–46. https://periodicos.pucpr.br/index.php/cienciaanimal/issue/view/1977

12. Burke JM, Miller JE. Sustainable approaches to parasite control in ruminant livestock. Vet Clin North Am Food Anim Pract. 2020; 36(1):89-107. https://doi.org/10.1016/j.cvfa.2019.11.007

13. Torres-Acosta JFJ, Sandoval-Castro CA, Hoste H, Aguilar-Caballero AJ, Cámara-Sarmiento MA, Alonso-Díaz MA. Nutritional manipulation of sheep and goats for the control of gastrointestinal nematodes under hot humid and subhumid tropical conditions. Small Rum Res. 2012; 103(1):28-40. https://doi.org/10.1016/j.smallrumres.2011.10.016

14. Hoste H, Torres-Acosta JFJ, Quijada J, Chan-Pérez I, Dakheel MM, Kommuru DS, et al. Interactions between nutrition and infections with Haemonchus contortus and related gastrointestinal nematodes in small ruminants. Adv Parasitol. 2016; 93:239-351. https://doi.org/10.1016/bs.apar.2016.02.025

15. Heckendorn F, Bieber A, Werne A, Saratsis A, Maurer V, Stricker C. The genetic basis for the selection of dairy goats with enhanced resistance to gastrointestinal nematodes. Parasite. 2017; 24:32. https://doi.org10.1051/parasite/2017033

16. Bishop SC. A consideration of resistance and tolerance for ruminant nematode infections. Front Genet. 2012; 3:168. https://doi.org/10.3389/fgene.2012.00168

17. Claerebout E, Geldholf P. Helminth vaccines in ruminants: From development to application. Vet Clin North Am Food Anim Pract. 2020; 36(1):159-171. https://doi.org/10.1016/j.cvfa.2019.10.001

18. Ehsan M, Hu RS, Liang QL, Hou JL, Song X, Yan R, et al. Advances in the development of anti-Haemonchus contortus vaccines: Challenges, opportunities and perspectives. Vaccines. 2020; 8(3):555. https://doi.org/10.3390/vaccines8030555

19. Galindo-Barboza AJ, Torres-Acosta JFJ, Cámara-Sarmiento R, Sandoval-Castro CA, Aguilar-Caballero AJ, Ojeda-Robertos NF, et al. Persistence of the efficacy of copper oxide wire particles against Haemonchus contortus in sheep. Vet Parasitol. 2011; 176(2-3):201-207. https://doi.org/10.1016/j.vetpar.2010.11.012

20. Whitley NC, Dykes G, Vazquez J, Burke JM, Terrill T. Effect of Copper Oxide Wire Particles without anthelmintic treatment or anthelmintic treatment alone on gastrointestinal nematode (GIN) fecal egg counts in goats. J Anim Sci; 2021: 99(Suppl.S2). https://doi-org.ezproxy.javeriana.edu.co/10.1093/jas/skab096.079

21. Mahieu M, Arquet R, Fleury J, Bonneau M, Mandonnet N. Mixed grazing of adult goats and cattle: Lessons from long-term monitoring. Vet Parasitol. 2020; 280:109087. https://doi.org/10.1016/j.vetpar.2020.109087

22. Szewc M, De Waal T, Zintl A. Biological methods for the control of gastrointestinal nematodes. Vet J. 2021; 268:105602. https://doi.org/10.1016/j.tvjl.2020.105602

23. Comans-Pérez RJ, Sánchez JE, Al-Ani LKT, González-Cortázar M, Castañeda-Ramírez GS, Mendoza-de-Gives P, et al. Biological control of sheep nematode Haemonchus contortus using edible mushrooms. Biol Control. 2021; 152:104420. https://doi.org/10.1016/j.biocontrol.2020.104420

24. Borges DGL, Borges FA. Plants and their medicinal potential for controlling gastrointestinal nematodes in ruminants. Nematoda. 2016; 3e:92016. https://dx.doi.org/10.4322/nematoda.00916

25. García-Bustos JF, Sleebs BE, Gasser RB. An appraisal of natural products active against parasitic nematodes of animals. Parasit Vectors. 2019; 12(1):1-22. https://doi.org/10.1186/s13071-019-3537-1

26. Liu M, Panda SK, Luyten W. Plant-based natural products for the discovery and development of novel anthelmintics against nematodes. Biomolecules. 2020; 10(3):426. https://doi.org/10.3390/biom10030426

27. Mithöfer A, Boland W. Plant defense against herbivores: Chemical aspects. Annu Rev Plant Biol. 2012; 63:431-450. https://doi.org/10.1146/annurev-arplant-042110-103854

28. Agrawal AA, Weber MG. On the study of plant defence and herbivory using comparative approaches: how important are secondary plant compounds. Ecol Lett. 2015; 18(10):985-991. https://doi.org/10.1111/ele.12482

29. Ma T, Gao H, Zhang D, Shi Y, Zhang T, Shen X, Wu S, Xiang L, Chen S. Transcriptome analyses revealed the ultraviolet B irradiation and phytohormone gibberellins coordinately promoted the accumulation of artemisinin in Artemisia annua L. Chin Med. 2020; 15:67. https://doi.org/10.1186/s13020-020-00344-8

30. De Morais LAS. Influência dos fatores abióticos na composição química dos óleos essenciais. Hortic Bras. 2009; 27(2):S4050-4063. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/143457/1/2009AA-051.pdf

31. Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q. Response of plant secondary metabolites to environmental factors. Molecules. 2028; 23(4):762. https://doi.org/ 10.3390/molecules23040762

32. Neilson EH, Goodger JQD, Woodrow IE, Møller BL. Plant chemical defense: At what cost?. Trends Plant Sci. 2013; 18(5):250–258. http://dx.doi.org/10.1016/j.tplants.2013.01.001

33. Mueller-Harvey I, Bee G, Dohme-Meier F, Hoste H, Karonen M, Kölliker R, et al. Benefits of condensed tannins in forage legumes fed to ruminants: Importance of structure, concentration, and diet composition. Crop Sci. 2019; 59(3):861–885. https://doi.org/10.2135/cropsci2017.06.0369

34. Villalba JJ, Costes-Thiré M, Ginane C. Phytochemicals in animal health: Diet selection and trade-offs between costs and benefits. Proc Nutr Soc. 2017; 76(2):113–121. https://doi.org/10.1017/S0029665116000719

35. Muir J. The multi-faceted role of condensed tannins in the goat ecosystem. Small Rumin Res. 2011; 98(1-3):115–120. http://dx.doi.org/10.1016/j.smallrumres.2011.03.028

36. Hackmann TJ, Spain JN. Invited review: Ruminant ecology and evolution: Perspectives useful to ruminant livestock research and production. J Dairy Sci. 2010; 93(4):1320–1334. https://doi.org/10.3168/jds.2009-2071

37. Wang S, Alseekh S, Fernie AR, Luo J. The Structure and Function of Major Plant Metabolite Modifications. Mol Plant. 2019; 12(7):899–919. https://doi.org/10.1016/j.molp.2019.06.001

38. Pichersky E, Lewinsohn E. Convergent evolution in plant specialized metabolism. Annu Rev Plant Biol. 2011; 62:49–66. https://doi.org/10.1146/annurev-arplant-042110-103814

39. Staniek A, Bouwmeester H, Fraser PD, Kayser O, Martens S, Tissier A, et al. Natural products – modifying metabolite pathways in plants. Biotechnol J. 2013; 8(10):1159-71. https://doi.org/10.1002/biot.201300224

40. Dubois O, Allanic C, Charvet CL, Guégnard F, Février H, Théry-Koné I, et al. Lupin (Lupinus spp.) seeds exert anthelmintic activity associated with their alkaloid content. Sci Rep. 2019. 9(1):1-12. https://doi.org/10.1038/s41598-019-45654-6

41. Herath HMPD, Preston S, Jabbar A, García-Bustos J, Taki AC, Addison RS, et al. Identification of Fromiamycalin and Halaminol A from Australian marine sponge extracts with anthelmintic activity against Haemonchus contortus. Mar Drugs. 2019; 17:598. https://doi.org/10.3390/md17110598

42. Spiegler V, Liebau E, Hensel A. Medicinal plant extracts and plant-derived polyphenols with anthelmintic activity against intestinal nematodes. Nat Prod Rep. 2017; 34(6):627–643. https://doi.org/10.1039/c6np00126b

43. Oliveira Santos F, Ponce Morais Cerqueira A, Branco A, José Moreira Batatinha M, Borges Botura M. Anthelmintic activity of plants against gastrointestinal nematodes of goats: A review. Parasitology. 2019;146(10):1233–1246. https://doi.org/10.1017/S0031182019000672

44. Hoste H, Martínez-Ortíz-de-Montellano C, Manoralaki F, Brunet S, Ojeda-Robertos N, Fourquaux I, et al. Direct and indirect effect of bioactive tannin-rich tropical and temperate legumes against nematode infections. Vet Parasitol. 2012; 186(1-2):18–27. https://doi.org/10.1016/j.vetpar.2011.11.042

45. Piluzza G, Sulas L, Bullita S. Tannins in forage plants and their role in animal husbandry and environmental sustainability: A review. Grass Forage Sci. 2014; 69(1):32–48. https://doi.org/10.1111/gfs.12053

46. Zhou F, Pichersky E. More is better: the diversity of terpene metabolism in plants. Curr Opin Plant Biol. 2020; 55:1-10. https://doi.org/10.1016/j.pbi.2020.01.005

47. Bodas R, Prieto N, García-González R, Andrés S, Giráldez FJ, López S. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim Feed Sci Technol. 2012; 176(1-4):78-93. https://doi.org/10.1016/j.anifeedsci.2012.07.010

48. Gershenzon J, Dudareva N. The function of terpene natural products in the natural world. Nat Chem Biol. 2007; 3:408-414. https://doi.org/10.1038/nchembio.2007.5

49. Mudianta IW, White AM, Suciati, Katavic PL, Krishnaraj RR, Winters AE, et al. Chemoecological studies on marine natural products: Terpene chemistry from marine mollusks. Pure Appl Chem. 2014; 86(6):995–1002. https://doi.org/10.1515/pac-2013-1111

50. Dudareva N, Negre F, Nagegowda DA, Orlova I. Plant volatiles: recent advances and future perspectives. Crit Rev Plant Sci. 2006; 25:417-440. https://doi.org/10.1080/07352680600899973

51. Bruce TJA, Pickett JA. Perception of plant volatile blends by herbivorous insects — Finding the right mix. Phytochemistry. 2011; 72(13):1605-1611. https://doi.org/10.1016/j.phytochem.2011.04.011

52. Benchaar C, Calsamiglia S, Chaves AV, Fraser GR, Colombatto D, McAllister TA, Beauchemin KA. A review of plant-derived essential oils in ruminant nutrition and production. Anim Feed Sci Technol. 2008; 145:209-228. https://doi.org/10.1016/j.anifeedsci.2007.04.014

53. García C, Montero G, Coronado MA, Valdez B, Stoytcheva M, Rosas N, et al. Valorization of Eucalyptus Leaves by Essential Oil Extraction as an Added Value Product in Mexico. Waste and Biomass Valorization. 2017;8(4):1187–1197. https://doi.org/10.1007/s12649-016-9695-x

54. Torres RNS, Moura DC, Ghedini CP, Ezequiel JMB, Almeida MTC. Meta-analysis of the effects of essential oils on ruminal fermentation and performance of sheep. Small Rumin Res. 2020; 189:106148. https://doi.org/10.1016/j.smallrumres.2020.106148

55. Cobellis G, Trabalza-Marinucci M, Yu Z. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Sci Total Environ. 2016; 545–546:556–568. http://dx.doi.org/10.1016/j.scitotenv.2015.12.103

56. Pavela R. Essential oils for the development of eco-friendly mosquito larvicides: A review. Ind Crops Prod. 2015; 76:174–187. http://dx.doi.org/10.1016/j.indcrop.2015.06.050

57. Bhavaniramya S, Vishnupriya S, Al-Aboody MS, Vijayakumar R, Baskaran D. Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain Oil Sci Technol. 2019; 2(2):49-55. https://doi.org/10.1016/j.gaost.2019.03.001

58. Srivastava A, Lall R, Sinha A, Gupta RC. Essential Oils. En Nutraceuticals in Veterinary Medicine. Gupta R, Srivastava A, Lall R (Eds.). Switzerland: Springer Nature; 2019. https://doi.org/10.1007/978-3-030-04624-8

59. Mukherje N, Mukherjee S, Saini P, Roy P, Babu S. Phenolics and terpenoids; the promising new search for anthelmintics: A critical review. Mini-Reviews Med Chem. 2016; 16(17):1415-1441. https://doi.org/10.2174/1389557516666151120121036

60. Abdel-Rahman FH, Alaniz NM, Saleh MA. Nematicidal activity of terpenoids. J Environ Sci Heal B. 2013; 48(1):16-22. https://doi.org/10.1080/03601234.2012.716686

61. André WPP, Ribeiro WLC, Oliveira LMB, Macedo ITF, Rondon FCM, Bevilaqua CML. Óleos essenciais e seus compostos bioativos no controle de nematoides gastrintestinais de pequenos ruminantes. Acta Sci Vet. 2018; 46:1522. https://doi.org/10.22456/1679-9216.81804

62. Ketzis JK, Taylor A, Bowman DD, Brown DL, Warnick LD, Erb HN. Chenopodium ambrosioides and its essential oils as treatments for Haemonchus contortus and mixed adult-nematode infections in goats. Small Rum Res. 2002; 44(3):193-200. https://doi.org/10.1016/S0921-4488(02)00047-0

63. Camurça-Vasconcelos ALF, Bevilaqua CML, Morais SM, Maciel MV, Costa CTC, Macedo ITF, et al. Anthelmintic activity of Lippia sidoides essential oil on sheep gastrointestinal nematodes. Vet Parasitol. 2008; 154(1-2):167-170. https://doi.org/10.1016/j.vetpar.2008.02.023

64. Macedo ITF, Bevilaqua CML, Oliveira LMB, Camurça-Vasconcelos ALF, Vieira LS, Oliveira FR, et al. Anthelmintic effect of Eucalyptus staigeriana essential oil against gastrointestinal nematodes. Vet Parasitol. 2010; 173(1-2):93-98. https://doi.org/10.1016/j.vetpar.2010.06.004

65. Squires JM, Foster JG, Lindsay DS, Caudell DL, Zajac AM. Efficacy of an orange oil emulsion as an anthelmintic against Haemonchus contortus in gerbils (Meriones unguiculatus) and in sheep. Vet Parasitol. 2010; 172(1-2):95-99. https://doi.org/10.1016/j.vetpar.2010.04.017

66. Katiki LM, Chagas ACS, Takahira RK, Juliani HR, Ferreira JFS, Amarante AFT. Evaluation of Cymbopogon schoenanthus essential oil in lambs experimentally infected with Haemonchus contortus. Vet Parasitol. 2012; 186(3-4):312-318. https://doi.org/10.1016/j.vetpar.2011.12.003

67. Whitney TR, Wildeus S, Zajac AM. The use of redberry juniper (Juniperus pinchotii) to reduce Haemonchus contortus fecal egg counts and increase ivermectin efficacy. Vet Parasitol. 2013; 197(1-2):82-188. https://doi.org/10.1016/j.vetpar.2013.06.010

68. Andre WPP, Ribeiro WLC, Cavalcante GS, Santos, JML, Macedo ITF, Paula HCB, et al. Comparative efficacy and toxic effects of carvacryl acetate and carvacrol on sheep gastrointestinal nematodes and mice. Vet Parasitol. 2016; 218:52-58. https://doi.org/10.1016/j.vetpar.2016.01.001

69. Ferreira LE, Benincasa BI, Fachin AL, França SC, Contini SSHT, Chagas ACS, Beleboni RO. Thymus vulgaris L. essential oil and its main component thymol: Anthelmintic effects against Haemonchus contortus from sheep. Vet Parasitol. 2016; 288:70-76. https://doi.org/10.1016/j.vetpar.2016.08.011

70. Azando EVB, Olounlade AP, Hounzangbe-Adote MS, Tam Ha TB, Fabre N, Valentin A. Contrôle des parasitoses gastro-intestinales ovines par l’huile essentielle de Zanthoxylum zantoxyloïdes (Fagara zantoxyloïdes). Rev Med Vet. 2017; 168:205-212. https://www.revmedvet.com/2017/RMV168_205_212.pdf

71. Chagas ACS, Figuereido A, Politi FAS, Moro IJ, Esteves SN, Bizzo HR, Gama PE, Chaves FCM. Efficacy of essential oils from planta cultivated in the Amazonian Biome against gastrointestinal nematodes in sheep. J Parasit Dis. 2018; 42:357-364. https://doi.org/10.1007/s12639-018-1007-x

72. Katiki LM, Araujo RC, Ziegelmeyer L, Gomes ACP, Gutmanis G, Rodrigues L, et al. Evaluation of encapsulated anethole and carvone in lambs artificially- and naturally – infected with Haemonchus contortus. Exp Parasitol. 2019; 197:36-42. https://doi.org/10.1016/j.exppara.2019.01.002

73. Wood IB, Amaral NK, Bairden K, Duncan JL, Kassai T, Malone JB, et al. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P.) second edition of guidelines for evaluating the efficacy of anthelmintics in ruminants (bovine, ovine, caprine). Vet Parasitol. 1995; 58:181–213. https://doi.org/10.1016/0304-4017(95)00806-2

74. Jackson F, Hoste H. In vitro methods for the primary screening of plant products for direct activity against ruminant gastrointestinal nematodes. En In Vitro Screening of Plant Resources for Extra Nutritional Attributes in Ruminants: Nuclear and Related Methodologies; Vercoe PE, Makkar HPS, Schlink AC (Eds.). FAO/IAEA Springer Edition: Dordrecht, The Netherlands; 2010.

75. Villalba JJ, Provenza FD. Challenges in Extrapolating In vitro Findings to In Vivo Evaluation of Plant Resources. En In Vitro Screening of Plant Resources for Extra Nutritional Attributes in Ruminants: Nuclear and Related Methodologies; Vercoe PE, Makkar HPS, Schlink AC (Eds.). FAO/IAEA Springer Edition: Dordrecht, The Netherlands; 2010.

76. Castilho CVV, Fantatto RR, Gaínza YA, Bizzo HR, Barbi NS, Leitão SG, et al. In vitro activity of the essential oil from Hesperozygis myrtoides on Rhipicephalus (Boophilus) microplus and Haemonchus contortus. Rev Bras Farmacogn. 2017; 27(1):70–76. http://dx.doi.org/10.1016/j.bjp.2016.08.005

77. Katiki LM, Barbieri AME, Araujo RC, Veríssimo CJ, Louvandini H, Ferreira JFS. Synergistic interaction of ten essential oils against Haemonchus contortus in vitro. Vet Parasitol. 2017; 243: 47–51. http://dx.doi.org/10.1016/j.vetpar.2017.06.008

78. López MD, Pascual-Villalobos MJ. Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Ind Crop Prod. 2010; 31:284–288. https://doi.org/10.1016/j.indcrop.2009.11.005

79. Costes-Thiré M, Laurent P, Ginane C, Villalba JJ. Diet selection and trade-offs between condensed tannins and nutrients in parasitized sheep. Vet Parasitol. 2019; 271:14–21. https://doi.org/10.1016/j.vetpar.2019.05.013

80. Landau SY, Provenza FD. Of browse, goats, and men: Contribution to the debate on animal traditions and cultures. Appl Anim Behav Sci. 2020; 232:105127. https://doi.org/10.1016/j.applanim.2020.105127

81. Da Silva JJM, Campanharo SC, Paschoal JAR. Ethnoveterinary for food-producing animals and related food safety issues: A comprehensive overview about terpenes. Compr Rev Sci Food Saf. 2021; 20(1):1-43 https://doi.org/10.1111/1541-4337.12673

82. Zeineldin MM, Sabek AA, Barakat RA, Elghandour MMMY, Salem AZ, Jiménez RM. Potential contribution of plants bioactive in ruminant productive performance and their impact on gastrointestinal parasites elimination. Agroforest Syst. 2020; 94(4):1415-1432. https://doi.org/10.1007/s10457-018-0295-6

83. Hoste H, Torres-Acosta JFJ, Sandoval-Castro CA, Mueller-Harvey I, Sotiraki S, Louvandini H, et al. Tannin containing legumes as a model for nutraceuticals against digestive parasites in livestock. Vet Parasitol. 2015; 312(1-2):5–17. http://dx.doi.org/10.1016/j.vetpar.2015.06.026

84. Torres-Fajardo RA, González-Pech PG, Sandoval-Castro CA, Torres-Acosta JFJ. Small ruminant production based on rangelands to optimize animal nutrition and health: Building an interdisciplinary approach to evaluate nutraceutical plants. Animals. 2020; 10(10):1-32. https://doi.org/10.3390/ani10101799

Descargas

La descarga de datos todavía no está disponible.