Skip to main navigation menu Skip to main content Skip to site footer

Arenavirus Infections

Infecciones por arenavirus



Open | Download

How to Cite
Mattar V, S., Guzmán T, C., Calderón R, A., & González Tous, M. (2017). Arenavirus Infections. Journal MVZ Cordoba, 22(supl), 6089-6100. https://doi.org/10.21897/rmvz.1078

Dimensions
PlumX
Salim Mattar V
Camilo Guzmán T
Alfonso Calderón R
Marco González Tous

The infectious syndromes associated with arenaviruses in South America are four: febrile syndrome of viral origin; Haemorrhagic fevers with or without neurological involvement; Aseptic meningitis and meningo-encephalitis. Among the Arenavirus of the new world is the Tacaribe complex where the viruses are found: Junín (Argentina), Guanarito (Venezuela), Machupo (Bolivia) and Sabiá (Brazil), which are characterized by hemorrhagic fevers. In Colombia the arenavirus Pichindé was isolated in 1965, from the rodent Oryzomys albigularis, in the valley of Pichindé (Valle del Cauca). This arenavirus produces a persistent infection in its host and is not pathogenic for the man. There is evidence of the circulation of the Guanarito virus in rodents from Córdoba, but there are no cases diagnosed in humans; In Colombia, the genome of the lymphocytic choriomeningitis virus was detected in the brains of rodents Mus musculus. The diagnosis is based on the knowledge of local epidemiology and the suspicion of a patient with fever in endemic areas, where infections such as malaria, dengue and leptospirosis, sepsis of bacterial origin and rickectomy have been excluded. Virus isolation in the feverish period is the gold standart, but it implies contact with the virus that is highly infectious, which represents a public health problem. Serology has been used for diagnosis, but there is no commercial evidence and only research groups and large public health laboratories have these tests. Most of the patients present a moderate severity, which needs adequate hydration, antipyretics and anti-inflammatories. All patients with severe signs should be aggressively treated. The use of drugs has not demonstrated a decrease in mortality but a significant reduction in viremia.


Article visits 3507 | PDF visits


Downloads

Download data is not yet available.
  1. McLay L, Liang Y, Hinh L. Comparative analysis of disease pathogenesis and molecular mechanisms of new world and old world arenavirus infections. J Gen Virol. 2014;95:1-15. https://doi.org/10.1099/vir.0.057000-0
  2. Briggiler A, Sinchi A, Coronel F, Sánchez Z, Levis S, Taylor J, et al. Los nuevos escenarios de transmisión de la fiebre hemorrágica Argentina desde la introducción de la vacuna a virus Junín vivo atenuado (candid#1): una experiencia en trabajadores golondrinas. Rev Peru med Exp Salud pública. 2015;32(1):165-171. https://doi.org/10.17843/rpmesp.2015.321.1589
  3. Delgado S, Erickson BR, Agudo R, Blair PJ, Vallejo E, Albari-o CG, et al. Chapare virus, a newly discovered arenavirus isolated from a fatal hemorrhagic fever case in Bolivia. PLoS Pathog. 2008; 4:1-6. https://doi.org/10.1371/journal.ppat.1000047
  4. Cajimat MN, Milazzo ML, Rollin PE, Nichol ST, Bowen MD, Ksiazek TG. Genetic diversity among Bolivian arenaviruses. Virus Res. 2009;140(1-2):24-31. https://doi.org/10.1016/j.virusres.2008.10.016
  5. Trapido H, SanMartín C. Pichindé virus a new virus of the Tacaribe group from Colombia. Am J Trop Med Hyg. 1971; 20:631-641. https://doi.org/10.4269/ajtmh.1971.20.631
  6. Enría DA, Mills JN, Bausch D, Shieh WJ, Peters C.J. Arenavirus. En: Guerrant R, Walker D, Weller P. Tropical Infectious Diseases. Third Edition. Saunders. Elsevier. 2011.
  7. Radoshitzky SR, Bao Y, Buchmeier MJ, Charrel RN, Clawson AN, Clegg CS, et al. Past, present, and future of arenavirus taxonomy. Arch Virol. 2015; 160:1851-1874. https://doi.org/10.1007/s00705-015-2418-y
  8. Aguilar PV, Camargo W, Vargas J, Guevara C, Roca Y, Felices V, et al. Reemergence of Bolivian hemorrhagic fever, 2007-2008. Emerg Infect Dis. 2009; 15:1526-1528. https://doi.org/10.3201/eid1509.090017
  9. Gryseels S, Baird SJE, Borremans B, Makundi R, Leirs H, et al. When viruses don't go viral: The importance of host phylogeographic structure in the spatial spread of arenaviruses. 2017. PLOS Pathogens 13(1): e1006073. https://doi.org/10.1371/journal.ppat.1006073
  10. Mattar S, Guzman C, Arrazola J, Soto E, Barrios J, Pini N, et al. Antibody to arenaviruses in rodents, Caribbean Colombia. Emerg Infect Dis. 2011; 17:1315-357. https://doi.org/10.3201/eid1707.101961
  11. Restrepo B, Rodas JD, Montoya-Ruiz C, Zuluaga AM, Parra-Henao G, Agudelo-Flórez P. Evidencia serológica retrospectiva de infecciones por Leptospira spp., dengue, hantavirus y arenavirus en indígenas Emberá-Katio, Colombia. Rev. chil. Infectol. 2016;33(4): 472-473.
  12. Castellar A, Guevara M, Rodas JD, Londo-o AF, Arroyabe E, Díaz FJ, et al. Primera evidencia de infección por el virus de la coriomeningitis linfocítica (arenavirus) en roedores Mus musculus capturados en la zona urbana del municipio de Sincelejo (Sucre, Colombia). Biomédica. 2017;37(Sp.1). Citación provisional.
  13. Bowen MD, Peters CJ, Nichol ST. The phylogeny of new world (Tacaribe Complex) arenaviruses. Virology. 1996; 219:285-290. https://doi.org/10.1006/viro.1996.0248
  14. Rodas JD, Salvato M. Tales of mice and men: Natural history of arenaviruses. Rev Col Cienc Pec. 2006;19(4):382-400.
  15. Reguera J, Gerlach P, Rosenthal M, Gaudon S, Coscia F, Günther S, et al. Comparative Structural and Functional Analysis of Bunyavirus and Arenavirus Cap-Snatching Endonucleases. PLoS Pathog. 2016;12(6):e1005636. https://doi.org/10.1371/journal.ppat.1005636
  16. Martínez-Sobrido L, de la Torre JC. Reporter-expressing, replicating-competent recombinant arenaviruses. Viruses. 2016;8(7):197. https://doi.org/10.3390/v8070197
  17. Crispin M, Zeltina A, Zitzmann N, Bowden T. A Native functionality and therapeutic targeting of arenaviral glycoproteins. Current Opinion in Virology. 2016;18:70-75. https://doi.org/10.1016/j.coviro.2016.04.001
  18. Patterson M, Grant A, Paessler S. Epidemiology and pathogenesis of Bolivian hemorrhagic fever. Curr Opin Virol. 2014;5:82-90. https://doi.org/10.1016/j.coviro.2014.02.007
  19. Moraes FLT. Febres hemorrágicas por vírus no Brasil. Revista da Sociedade Brasileira de Medicina Tropical. 2006;39(2):203-210. https://doi.org/10.1590/S0037-86822006000200014
  20. Center for Food Security & Public Health (CFSPH), Insitute for international Cooperation in Animal Biologics (IICA), Viral hemorrhagic fevers caused by arenaviruses. 2010:1.9. Tomado de: http://www.cfsph.iastate.edu/Factsheets/pdfs/viral_hemorrhagic_fever_arenavirus.pdf
  21. Grant A, Seregin A, Huang C, Kolokoltsova O, Brasier A, Peters C, et al. Junín virus pathogenesis and virus replication, Viruses 2012;4:2317-2339. https://doi.org/10.3390/v4102317
  22. Soto E, Mattar S. Fiebres hemorrágicas por Arenavirus en Latinoamérica. Revista Científica Salud Uninorte. 2010;26(2): 298-310
  23. Ireland DC, Tami C, Pedras-Vasconcelos J, Verthelyi D. CD4 and CD8 T cells mediate distinct lethal meningoencephalitis in mice hallenged with Tacaribe arenavirus. Cell. Mol. Immunol. 2017;14:90-106. https://doi.org/10.1038/cmi.2016.41
  24. Harrison LH, Halsey NA, McKee Jr KT, Peters CJ, Barrera-Oro JG, Briggiler AM, et al. Clinical case definitions for Argentine Hemorrhagic Fever. Clin Infect Dis. 1999; 28:1091-1094. https://doi.org/10.1086/514749
  25. Weaver SC, Salas RA, de Manzione N, Fulhorst CF, Duno G, Utrera A, et al. Guanarito virus (Arenaviridae) isolates from endemic and outlying localities in Venezuela: Sequence comparisons among and within strains isolated from Venezuelan hemorrhagic fever patients and rodents. Virology. 2000; 266:189-195. https://doi.org/10.1006/viro.1999.0067
  26. Salas R, Pacheco ME, Ramos B, Taibo ME, Jaimes E, Vasquez C, et al. Venezuelan haemorrhagic fever. Lancet 1991; 338:1033-1036. https://doi.org/10.1016/0140-6736(91)91899-6
  27. Ippolito G, Feldmann H, Lanini S, Vairo F, Di Caro A, Capobianchi, et al. Viral hemorrhagic fevers: advancing the level of treatment. BMC Medicine 2012, 10:31. doi: 10.1186/1741-7015-10-31. https://doi.org/10.1186/1741-7015-10-31
  28. de Manzione N, Salas RA, Paredes H, Godoy O, Rojas L, Araoz F, et al. Venezuelan hemorrhagic fever: clinical and epidemiological studies of 165 cases. Clin Infect Dis. 1998; 26:308-313. https://doi.org/10.1086/516299
  29. Peters CJ. Lymphocytic choriomeningitis virus, Lassa virus, and the South American hemorrhagic fevers. In: Mandell GL, Bennett JE, Dolin R, editors. Mandell, Douglas, and Bennett's principles and practice of infectious diseases, 7th ed. Philadelphia: Churchill Livingstone Elsevier; 2010. p. 2295–301. https://doi.org/10.1016/B978-0-443-06839-3.00167-3
  30. Pérez-Ruiz M, Navarro-Marí JM, Sánchez-Seco MP, Gegúndez MI, Palacios G, Savji N, et al. Lymphocytic choriomeningitis virus-associated meningitis, southern Spain. Emerg Infect Dis. 2012; 18:855-858. https://doi.org/10.3201/eid1805.111646
  31. Macneil A, Ströher U, Farnon E, Campbell S, Cannon D, Paddock CD, et al. Solid Organ Transplant-associated Lymphocytic Choriomeningitis, United States, 2011. Emerg Infect Dis. 2012; 18:1256-1262. https://doi.org/10.3201/eid1808.120212
  32. Fukushi S, Tani H, Yoshikawa T, Saijo M, Morikawa S. Serological assays based on recombinant viral proteins for the diagnosis of arenavirus hemorrhagic fevers. Viruses. 2012; 4(10):2097-114. https://doi.org/10.3390/v4102097
  33. Stefan PC, Chase K, Coyne S, Kulesh DA, Minogue TD, Koehler JW. Development of real-time reverse transcriptase qPCR assays for the detection of Punta Toro virus and Pichindé virus. Virol J. 2016; 13:54 10.1186/s12985-016-0509-3. https://doi.org/10.1186/s12985-016-0509-3
  34. Shuetsu F, Hideki T, Tomoki Y, Masayuki S, Shigeru M. Serological assays based on recombinant viral proteins for the diagnosis of arenavirus hemorrhagic fevers. Viruses. 2012;4: 2097-2114; doi:10.3390/v4102097 https://doi.org/10.3390/v4102097
  35. Chenga BYH, Nogalesa A, de la Torre JC, Martínez-Sobrido L. Development of live-attenuated arenavirus vaccines based on codon deoptimization of the viral glycoprotein Virology. 2017;15 (501):35-46. https://doi.org/10.1016/j.virol.2016.11.001
  36. Koma T, Huang C, Aronson JF, Walker AG, Miller M, Smith JN, et al. The ectodomain of glycoprotein from the candid#1 vaccine strain of Junín virus rendered Machupo virus partially attenuated in mice lacking IFN-αβ/γ receptor. PLoS Negl Trop Dis. 2016;10(8): e0004969. doi:10.1371/journal. pntd.0004969.
  37. Ranjit S, Kissoon N, Jayakumar I. Aggressive management of dengue shock syndrome may decrease mortality rate: a suggested protocol. Pediatr Crit Care Med 2005; 6:412-419. https://doi.org/10.1097/01.PCC.0000163676.75693.BF
  38. Johnson KM, Wiebenga NH, Mackenzie RB, Kuns ML, Tauraso NM, Shelokov A, et al. Virus isolations from human cases of hemorrhagic fever in Bolivia. Proc Soc Exp Biol Med. 1965; 118:113-118. https://doi.org/10.3181/00379727-118-29772
  39. Grove JN, Branco LM, Boisen ML, Muncy I, Henderson LA, Schieffellin JS, et al. Capacity building permitting comprehensive monitoring of a severe case of Lassa hemorrhagic fever in Sierra Leone with a positive outcome: Case Report. Virol J. 2011; 8:314. doi:10.1186/1743-422X-8-314. https://doi.org/10.1186/1743-422X-8-314
  40. Nhi N, Schimmelpfeng HK, Cisneros MI, Cubitt B, Iwasaki M, de la Torre JC, et al. Correction for Ngo et al., Identification and mechanism of action of a novel small-molecule inhibitor of arenavirus multiplication. J Virol. 2016; 90:18.8381. doi:10.1128/JVI.01289-16. https://doi.org/10.1128/JVI.01289-16

Sistema OJS 3.4.0.3 - Metabiblioteca |