Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Perfil fermentativo, calidad nutricional y estabilidad aerobia de ensilajes mezclados de hierba elefante (Pennisetum purpureum Schum) y maní forrajero (Arachis pintoi)

Fermentative profile, nutritional composition, and aerobic stability of elephant grass (Pennisetum purpureum Schum) and forage peanut (Arachis pintoi) mixed silages



Cómo citar
Araújo, C. de A., Novaes, J. J. da S., de Araújo, J. S., de Macedo, A., Silva, C. de S., da Silva, T. da C., Emerenciano Neto, J. V., Leal de Araújo, G. G., Campos, F. S., & Gois, G. C. (2024). Perfil fermentativo, calidad nutricional y estabilidad aerobia de ensilajes mezclados de hierba elefante (Pennisetum purpureum Schum) y maní forrajero (Arachis pintoi). Revista MVZ Córdoba, 27(3), e2549. https://doi.org/10.21897/rmvz.2549

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Cleyton de Almeida Araújo
Judicael Janderson da Silva Novaes
Janiele Santos de Araújo
Amélia de Macedo
Crislane de Souza Silva
Tamiris da Cruz da Silva
João Virgínio Emerenciano Neto
Gherman Garcia Leal de Araújo
Fleming Sena Campos
Glayciane Costa Gois

Cleyton de Almeida Araújo,

Universidade Federal do Vale do São Francisco, Petrolina, PE, Brazil.


Judicael Janderson da Silva Novaes,

Universidade Federal do Vale do São Francisco, Petrolina, PE, Brazil.


Janiele Santos de Araújo,

Universidade Federal do Vale do São Francisco, Petrolina, PE, Brazil.


Amélia de Macedo,

Universidade Federal do Vale do São Francisco, Petrolina, PE, Brazil.


Crislane de Souza Silva,

Universidade Federal do Vale do São Francisco, Petrolina, PE, Brazil.


Tamiris da Cruz da Silva,

Universidade Federal do Vale do São Francisco, Petrolina, PE, Brazil.


João Virgínio Emerenciano Neto,

Universidade Federal do Rio Grande do Norte, Macaíba, RN, Brazil.


Gherman Garcia Leal de Araújo,

Embrapa Semiárido, Petrolina, PE, Brazil.


Fleming Sena Campos,

Universidade Federal Rural de Pernambuco, Garanhuns, PE, Brazil.


Glayciane Costa Gois,

Universidade Federal do Vale do São Francisco, Petrolina, PE, Brazil.


Objetivo. Determinar el perfil fermentativo, composición centesimal y estabilidad aerobia de ensilajes mezclados de hierba-elefante combinadas con niveles de maní forrajero. Materiales y métodos. Distintos niveles de maní forrajero (0,0, 20,0, 40,0, 60,0 y el 80,0% en la base de la materia fresca) se adicionaron a los ensilajes de hierba-elefante. Se adoptó el delineamento enteramente casualizado, con 5 tratamientos y 3 repeticiones, totalizando 15 silos experimentales que se abrieron tras 30 días de sellados. Perfil fermentativo, composición centesimal y estabilidad aerobia. Resultados. Se evaluaron el aumento de los niveles de maní forrajero en los ensilajes de hierba elefante promovió aumento en la porosidad, permeabilidad, densidad y pH (p<0,001). Se observó reducción de 0,58 en el índice de Flieg para cada 1% de maní forrajero adicionado al ensilaje de hierba -elefante (p<0,001). La suma de la diferencia de temperatura del ensilaje con relación al ambiente (p=0,032) y estabilidad aerobia (p<0,001) presentó efecto cuadrático. La inclusión de maní forrajero en los ensilajes de hierba elefante redujo la materia seca, materia orgánica, fibra en detergente neutro y ácido, hemicelulosa, celulose y carbohidratos totales (p<0,05) y aumentó la materia mineral, proteína bruta, lignina, carbohidratos no fibrosos, y nutrientes digestibles totales (p<0,05). Conclusiones. En las condiciones experimentales, se recomienda la inclusión de hasta el 40% de maní forrajero combinado con hierba elefante para componer ensilajes mezclados, debido a la mejor dinámica fermentativa, perfil nutricional y estabilidad aerobia.


Visitas del artículo 427 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Luscher A, Mueller-Harvey I, Soussana JF, Rees RM, Peyraud JL. Potential of legume-based grassland–livestock systems in Europe: a review. Grass For Sci. 2014; 69(2):206–228. https://doi.org/10.1111/gfs.12124
  2. Gondim Filho AGC, Moreira GR, Gomes-Silva F, Cunha Filho M, Gomes DA, Ferreira AL, et al. Avaliação nutricional de genótipos de amendoim forrageiro (Arachis pintoi) por técnicas multivariadas. Res Soc Dev. 2020; 9(8):1-19. http://dx.doi.org/10.33448/rsd-v9i8.6039.
  3. Rigueira JPS, Pereira OG, Ribeiro KG, Valadares Filho SC, Cezário AS, Silva VP, et al. Silage of Marandu grass with levels of stylo legume treated or not with microbial inoculant. J Agric Sci. 2017; 9(9):36-42. https://doi.org/10.5539/jas.v9n9p36
  4. Silveira HVL, Braz TGS, Rigueira JPS, Santos MV, Gusmão JO, Alves MA, et al. Macauba palm cake as additive in elephant grass silage. Acta Sci Anim Sci. 2020; 42(1):1-10. https://doi.org/10.4025/actascianimsci.v42i1.47171
  5. Zanine AM, Sene OA, Ferreira DJ, Parente HN, Parente M.O.M., Pinho, RMA, et al. Fermentative profile, losses and chemical composition of silage soybean genotypes amended with sugarcane levels. Sci Rep. 2020; 10(e21064):1-10, https://doi.org/10.1038/s41598-020-78217-1
  6. Pacheco WF, Carneiro MSS, Pinto AP, Edvan RL, Arruda PCL, Do Carmo ABR. Fermentation losses of elephant grass (Pennisetum purpureum Schum.) silage with increasing levels of Gliricidia sepium hay. Acta Vet Bras. 2014; 8(3):155-162. https://doi.org/10.21708/avb.2014.8.3.3289
  7. Darabighane B, Aghjehgheshlagh FM, Mahdavi A, Navidshad B, Bernard JK. Replacing alfalfa hay with dry corn gluten feed alters eating behavior, nutrient digestibility, and performance of lactating dairy cows. Italian J Anim Sci. 2020; 19(1):1266–1276 https://doi.org/10.1080/1828051X.2020.1830722
  8. Amorim DS, Edvan RL, Nascimento RR, Bezerra LR, Araújo MJ, Silva AL, et al. Fermentation profile and nutritional value of sesame silage compared to usual silages. Italian J Anim Sci. 2020; 19(1):230-239. https://doi.org/10.1080/1828051X.2020.1724523
  9. Williams AG. The permeability and porosity of grass silage as affected by dry matter. J Agric Eng Res. 1994; 59(2):133-140. https://doi.org/10.1006/jaer.1994.1070
  10. van Verseveld CJW, Gebert J. Effect of compaction and soil moisture on the effective permeability of sands for use in methane oxidation systems. Waste Manag. 2020; 107(1):44-53. https://doi.org/10.1016/j.wasman.2020.03.038
  11. Jobim CC, Nussio LG, Reis RA, Schmidt P. Avanços metodológicos na avaliação da qualidade da forragem conservada. Rev Bras Zootec. 2007; 36(suppl.):101-119. https://doi.org/10.1590/S1516-35982007001000013
  12. Dong Z, Yuan X, Wen A, Desta ST, Shao T. Effects of calcium propionate on the fermentation quality and aerobic stability of alfalfa silage. Asian-Austral J Anim Sci. 2017; 30(9):1278-1284. https://doi.org/10.5713/ajas.16.0956
  13. Costa DM, Carvalho BF, Bernardes TF, Schwan RF, Ávila CLS. New epiphytic strains of lactic acid bacteria improve the conservation of corn silage harvested at late maturity. Anim Feed Sci Technol. 2021; 274: e114852. https://doi.org/10.1016/j.anifeedsci.2021.114852
  14. Araújo CA, Santos APM, Monteiro CCF, Lima DO, Torres AM, Santos CVS, et al. Efeito do tempo de ensilagem sobre a composição química, perfil fermentativo e estabilidade aeróbia de silagens de milho (Zea mays). Diversitas J. 2020; 5(1):547-561. https://doi.org/10.17648/diversitas-journal-v5i1-1035
  15. Williams SD, Shinners KJ. Farm-scale anaerobic storage and aerobic stability of high dry matter sorghum as a biomass feedstock. Biom Bioen. 2012; 46(1):309-316. https://doi.org/10.1016/j.biombioe.2012.08.010
  16. AOAC. Official Methods of Analysis Association of Official Analytical Chemists. Version 15 edition. Arlington, VA; 2019.
  17. Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and non starch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991; 74(10):3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  18. Sniffen CJ, O’Connor JD, Van Soest PJ, Fox DG, Russell JB. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J Anim Sci. 1992; 70(11):3562–3577. https://doi.org/10.2527/1992.70113562x
  19. Hall MB. Challenges with non-fiber carbohydrate methods. J Anim Sci. 2003; 81(12):3226-6. https://doi.org/10.2527/2003.81123226x
  20. Horst EH, Neumann M, Mareze J, Leão GFM, Bumbieris Júnior VH, Mendes MC. Nutritional composition of pre-dried silage of different winter cereals. Acta Scient. Anim Sci. 2018; 40(1):e42500. https://doi.org/10.4025/actascianimsci.v40i1.42500
  21. Wilkinson JM, Davies DR. The aerobic stability of silage: key findings and recent developments. Grass For Sci. 2012; 68(1):1-19. https://doi.org/10.1111/j.1365-2494.2012.00891.x
  22. Borreani G, Tabacco E, Schmidt RJ, Holmes BJ, Muck RE. Silage review: Factors affecting dry matter and quality losses in silages. J Dairy Sci. 2018; 101(5):3952-3979. https://doi.org/10.3168/jds.2017-13837
  23. Wang M, Franco M, Cai Y, Yu Z. Dynamics of fermentation profile and bacterial community of silage prepared with alfalfa, whole-plant corn and their mixture. Anim Feed Sci Technol. 2020; 270(1):e114702. https://doi.org/10.1016/j.anifeedsci.2020.114702.
  24. Pereira DS, Lana RP, Carmo DL, Costa YKS. Chemical composition and fermentative losses of mixed sugarcane and pigeon pea silage. Acta Scient. Anim Sci. 2019; 41(1):e43709. https://doi.org/10.4025/actascianimsci.v41i1.43709
  25. Gomes FM, Ribeiro KG, Souza IA, Silva JL, Agarussi MCN, Silva VP, et al. Chemical composition, fermentation profile, microbial population and dry matter recovery of silages from mixtures of palisade grass and forage peanut. Trop Grassl-For Trop. 2021; 9(1):34–42. https://doi.org/10.17138/TGFT(9)34-42
  26. Vu VH, Li X, Wang M, Liu R, Zhang G, Liu W, et al. Dynamics of fungal community during silage fermentation of elephant grass (Pennisetum purpureum) produced in northern Vietnam. Asian-Australas J Anim Sci. 2019; 32(7):e996. https://doi.org/10.5713/ajas.18.0708.
  27. Liu B, Yang Z, Huan H, Gu H, Xu N, Ding C. Impact of molasses and microbial inoculants on fermentation quality, aerobic stability, and bacterial and fungal microbiomes of barley silage. Sci. Rep. 2020; 10(1):1-10. https://doi.org/10.1038/s41598-020-62290-7
  28. Freitas CAS, Anjos AJ, Alves WS, Macêdo AJS, Coutinho DN, Barcelos MP, et al. Realocação de silagens em propriedades rurais: uma abordagem sobre o estado da arte. Res Soc Dev. 2020; 9(12):1-15. http://dx.doi.org/10.33448/rsd-v9i12.10860
  29. Azevedo MMR, Guimaraes AKV, Cabral ÍS, Barbosa CR, Machado LS, Pantoja JC, et al. Características de silagens de capim-elefante (Pennisetum purpureum Schum.) com níveis de inclusão de moringa (Moringa oleífera Lam.). Braz J Dev. 2020; 6(9):71418-71433. https://doi.org/10.34117/bjdv6n9-549.
  30. Zhao GQ, Wei SN, Liu C, Kim HJ, Kim JG. Effect of harvest dates on β-carotene content and forage quality of rye (Secale cereale L.) silage and hay. J Anim Sci Technol. 2021; 63(2):354-366 https://doi.org/10.5187/jast.2021.e28
  31. Dong Z, Wang S, Zhao J, Li J, Shao T. Effects of additives on the fermentation quality, in vitro digestibility and aerobic stability of mulberry (Morus alba L.) leaves silage. Asian-Australas J Anim Sci. 2019; 33(8): e1292. https://doi.org/10.5713/ajas.19.0420
  32. Nascimento G, Zenatti TF, Cantoia Júnior RC, Del Valle TA, Campana M, Fontanetti A, et al. Ensilagem de milho de diferentes genótipos produzidos com adubação orgânica. Agr. 2019; 12(44):196-203. https://doi.org/10.30612/agrarian.v12i44.9377
  33. Amaral RC, Carvalho BF, Costa DM, Morenz MJF, Schwan RF, Ávila CLS. Novel lactic acid bacteria strains enhance the conservation of elephant grass silage cv. BRS Capiaçu. Anim Feed Sci Technol. 2020; 264(1):e114472. https://doi.org/10.1016/j.anifeedsci.2020.114472
  34. Ziech MF, Olivo CJ, Ziech ARD, Martin TN. Morphogenesis in pastures of Coastcross-1 and Tifton 85 mixed with forage peanut, submitted to cutting management. Semina: Ci. Agr. 2016; 37(3):1461-1474. https://doi.org/10.5433/1679-0359.2016v37n3p1461
  35. Ferrero F, Piano S, Tabacco E, Borreani G. Effects of the conservation period and the inoculum of Lactobacillus hilgardii on the fermentative profile and aerobic stability of whole corn and sorghum silages. J Sci Food Agric. 2018; 99(5):2530-2540. https://doi.org/10.1002/jsfa.9463
  36. Carvalho WG, Costa KAP, Epifanio PS, Perim RC, Teixeira DAA, Medeiros LT. Silage quality of corn and sorghum added with forage peanuts. Rev Caat. 2016; 29(2):465–472. https://doi.org/10.1590/1983-21252016v29n224rc
  37. Nurhayu A, Saenab A, Ella A, Ishak ABL, Qomariyah N The effects of elephant grass silage combined with Indigofera sp. On the performance of bali cattle. J Anim Health Prod. 2021; 9(3):229-235. http://dx.doi.org/10.17582/journal.jahp/2021/9.3.229.235
  38. Chen L, Dong Z, Li J, Shao T. Ensiling characteristics, in vitro rumen fermentation, microbial communities and aerobic stability of low-dry matter silages produced with sweet sorghum and alfalfa mixtures. J Sci Food Agric. 2019; 99(5):2140-2151. http://dx.doi.org/10.1002/jsfa.9406
  39. Özyurt G, Gökdoğan S, Şimşek A, Yuvka I, Ergüven M, Boga EK. Fatty acid composition and biogenic amines in acidified and fermented fish silage: a comparison study. Arch Anim Nut. 2016; 70(1):72-86. https://doi.org/10.1080/1745039X.2015.1117696
  40. Lima LS, Oliveira RL, Borja MS, Bagaldo AR, Faria EFS, Silva TM, et al. Peanut cake concentrations in massai grass silage. Rev MVZ. 2013; 18(1):3265-3272.
  41. Machado E, Pintro PTM, Ítavo LCV, Agustinho BC, Daniel JLP, Santos NW, et al. Reduction in lignin content and increase in the antioxidant capacity of corn and sugarcane silages treated with an enzymatic complex produced by white rot fungus. Plos ONE. 2020; 15(2): e0229141. https://doi.org/10.1371/journal.pone.0229141
  42. Irawan A, Sofyan A, Ridwan R, Hassim HA, Respati AN, Wardani WW, et al. Effects of different lactic acid bacteria groups and fibrolytic enzymes as additives on silage quality: A meta-analysis. Bioresour. Technol Rep. 2021; 14(1):e100654. https://doi.org/10.1016/j.biteb.2021.100654
  43. Serra-Ferreira CM, Farias-Souza AG, Almeida-Mendonça RC, Simões-Souza M, Lopes-Filho WRL, Faturi C, et al. Murumuru (Astrocaryum murumuru) meal as an additive to elephant grass silage. Rev Colomb Cienc Pecu. 2020; 33(4):264-272. https://doi.org/10.17533/udea.rccp.v33n4a06
  44. Silva MDA, Carneiro MSS, Pinto AP, Pompeu RCFF, Silva DS, Coutinho MJF, et al. Avaliação da composição químico-bromatológica das silagens de forrageiras lenhosas do semiárido brasileiro. Semina: Ci Agr. 2015; 36(1):571-578. https://doi.org/10.5433/1679-0359.2015v36n1p571
  45. Zhang SJ, Chaudhry AS, Osman A, Shi CQ, Edwards GR, Dewhurst RJ, et al. Associative effects of ensiling mixtures of sweet sorghum and alfalfa on nutritive value, fermentation and methane characteristics. Anim Feed Sci Technol. 2015; 206(2015):29–38. http://dx.doi.org/10.1016/j.anifeedsci.2015.05.006.

Sistema OJS 3.4.0.3 - Metabiblioteca |