Efectos de la temperatura y la concentración de presas vivas en la larvicultura de Colossoma macropomum
Effects of temperature and live prey concentration on Colossoma macropomum larviculture
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Mostrar biografía de los autores
Objetivo. El estudio evaluó el rendimiento y la supervivencia de larvas de Colossoma macropomum a diferentes temperaturas y concentraciones de presa. Materiales y métodos. Se utilizaron dos temperaturas (28 y 32ºC) y dos concentraciones diarias iniciales (500 y 1.000 nauplios de artemia por larva) de presa. Estas concentraciones se incrementaron cada 5 días durante los primeros 15 días de cultivo. Del día 16 al 30, las larvas recibieron exclusivamente una dieta comercial. Resultados. En los primeros 7 días, el peso (W), la longitud total (LT) y la tasa de crecimiento específica diaria (SGR) fueron mayores para tratamientos T32 (p<0.05). Después de 15 días, W, TL y SGR fueron mayores para P1000 (p<0.05). Después de 22 días, W y TL sufrieron el efecto de la concentración inicial de presas y la temperatura del agua con valores más altos para P1000 y T32 (p<0.05). Al final de los 30 días de cultivo, W se vio afectado solo por la temperatura del agua con valores más altos para T32 (p<0.05). La TL mostró efecto de la temperatura y concentración inicial de presas con valores superiores para P1000 y T32 (p<0.05). Durante la alimentación con dieta comercial (días 16-30 de cultivo), la supervivencia fue mayor para T32 (94.38±6.12%) (p<0.05), sin diferencia para la concentración inicial de presas. Conclusiones. Se concluye que la larvicultura de C. macropomum debe realizarse con temperatura de 32° C y el manejo alimentario debe ser diferenciado durante los primeros 15 días, influido positivamente en el periodo de alimentación con ración.
Visitas del artículo 231 | Visitas PDF
Descargas
- Sebesta R, Kucharczyk D, Nowosad J, Sikora M, Stejskal V. Effect of temperature on growth and survival of maraena whitefish Coregonus maraena (Bloch 1779) larvae in controlled conditions. Aqua Res. 2018; 49:3151–3157. https://doi.org/10.1111/are.13778
- Brett JR, Groves TDD. Physiological energetics. Fish Phys. 1979; 8(6):280-352.
- Gadomski DM, Caddell SM. Effects of temperature on early-life-history stages of California halibut Paralichthys californicus. Fish Bull. 1991; 89(4):567-576. https://pubs.er.usgs.gov/publication/70180738
- Keckeis H, Kamler E, Bauer-Nemeschkal E, Schneeweiss K. Survival, development and food energy partitioning of nase larvae and early juveniles at different temperatures. Jour Fish Biol. 2001; 59: 45–61. https://doi.org/10.1006/jfbi.2001.1596
- Hansen TK, Falk-Petersen IB. Growth and survival of first-feeding spotted wolffish (Anarhichas minor Olafsen) at various temperature regimes. Aquac Res. 2002; 33:1119–1127. https://doi.org/10.1046/j.1365-2109.2002.00756.x
- Rijnsdorp AD, Peck MA, Engelhard GH, Möllmann C, Pinnegar JK. Resolving the effect of climate change on fish populations. J Mar Sci. 2009; 66:1570–1583. https://doi.org/10.1093/icesjms/fsp056
- Costa DP, de Oliveira Paes Leme F, Takata R, Costa DC, Souza e Silva W, Melillo Filho R, Alves GM, Luz RK. Effects of temperature on growth, survival and physiological parameters in juveniles of Lophiosilurus alexandri, a carnivorous neotropical catfish. Aquac Res. 2016; 47:1706–1715. https://doi.org/10.1111/are.12594
- Barros IBA, Villacorta-Correa MA, Carvalho TB. Stocking density and water temperature as modulators of aggressiveness, survival and zootechnical performance in matrinxã larvae, Brycon amazonicus. Aquaculture 2019; 502, 378-383. https://doi.org/10.1016/j.aquaculture.2018.12.070
- Yamamoto T, Shima T, Furuita H, Sugita T, Suzuki N. Effects of feeding time, water temperature, feeding frequency and dietary composition on apparent nutrient digestibility in rainbow trout Oncorhynchus mykiss and common carp Cyprinus carpio. Fish Scie. 2007; 73:161–170. https://doi.org/10.1111/j.1444-2906.2007.01314.x
- Bogevik AS, Henderson RJ, Mundheim H, Waagbø R, Tocher DR, Olsen RE. The influence of temperature on the apparent lipid digestibility in Atlantic salmon (Salmo salar) fed Calanus finmarchicus oil at two dietary levels. Aquaculture. 2010; 309:143–151. https://doi.org/10.1016/j.aquaculture.2010.08.016
- Handeland SO, Imsland AK, Stefansson SO. The effect of temperature and fish size on growth, feed intake, food conversion efficiency and stomach evacuation rate of Atlantic salmon post-smolts. Aquaculture. 2008; 283:36–42. https://doi.org/10.1016/j.aquaculture.2008.06.042
- Takata R, Nakayama CL, Silva W, Bazzoli NS, Luz RK. The effect of water temperature on muscle cellularity and gill tissue of larval and juvenile Lophiosilurus alexandri, a Neotropical freshwater fish. J Therm Biol. 2018; 76:80–88. https://doi.org/10.1016/j.jtherbio.2018.07.007
- Santos JCE, Luz RK. Effect of salinity and prey concentrations on Pseudoplatystoma corruscans, Prochilodus costatus and Lophiosilurus alexandri larviculture. Aquaculture. 2009; 287:324–328. https://doi.org/10.1016/j.aquaculture.2008.10.014
- Hearth S, Atapaththu SKSS. Sudden weaming of Angel fish Pterophyllum Scalare (Lichtenstein) (Pisces: Cichlidae) larvae brine shrimp (Artemia sp) nauplii to formulated larva feed. Spring. 2013; 2:102. https://doi.org/10.1186/2193-1801-2-102
- Zuanon JAS, Salaro AL, Furuya WM. Produção e nutrição de peixes ornamentais. R Bras Zootec. 2011; 40:165–174. https://www.sbz.org.br/revista/artigos/66271.pdf
- Dias JAR, Abe HA, Sousa NC, Ramos FM, Cordeiro CAM, Fujimoto RY. Uso do sal comum (NaCl) e densidade de estocagem durante a larvicultura de Betta splendens. Bol Inst Pes. 2016; 42:719–726. https://doi.org/10.20950/1678-2305.2016v42n3p719
- Abe HA, Reis RGA, Barros FAL, Paixão PEG, Meneses JO, Souza JCN et al. Optimal management improves Flowerhorn fish larviculture. Aquac res. 2021; 52(5):2353-2358. https://doi.org/10.1111/are.15085
- Blaxter JHS. The effect of temperature on larval fishes. Neth J Zool. 1991; 42:336–357. https://doi.org/10.1163/156854291X00379
- Takata R, Silva WS, Costa DC, Filho RM, Luz RK. Effect of water temperature and prey concentrations on initial development of Lophiosilurus alexandri Steindachner, 1876 (Siluriformes: Pseudopimelodidae), a freshwater fish. Neot Ichth. 2014; 12:853–860. https://doi.org/10.1590/1982-0224-20140063
- Espirito Santo AH, de Alba G, Reis YS, Costa LS, Sánchez-Vázquez FJ, Luz RK, Ribeiro PAP, López-Olmeda JF. Effects of temperature regime on growth and daily rhythms of digestive factors in Nile tilapia (Oreochromis niloticus) larvae. Aquaculture. 2020; 528:735545. https://doi.org/10.1016/j.aquaculture.2020.735545
- Gomes LC, Baldisserotto B, Senhorini JA. Effect of stocking density on water quality, survival, and growth of larvae of the matrinxa, Brycon cephalus (Characidae), in ponds. Aquaculture. 2000; 183:73–81. https://doi.org/10.1016/S0044-8486(99)00288-4
- Bermudes M, Glencross B, Austen K, Hawkins W. The effects of temperature and size on the growth, energy budget and waste outputs of barramundi (Lates calcarifer). Aquaculture. 2010; 306:160–166. https://doi.org/10.1016/j.aquaculture.2010.05.031
- Sun L, Chen H. Effects of ration and temperature on growth, fecal production, nitrogenous excretion and energy budget of juvenile cobia (Rachycentron canadum). Aquaculture. 2009; 292:197–206. https://doi.org/10.1016/j.aquaculture.2009.04.041
- Bendiksen EÅ, Berg OK, Jobling M, Arnesen AM, Måsøval K. Digestibility, growth and nutrient utilisation of Atlantic salmon parr (Salmo salar L.) in relation to temperature, feed fat content and oil source. Aquaculture. 2003; 224:283–299. https://doi.org/10.1016/S0044-8486(03)00218-7
- McCormick SD, Shrimpton JM, Zydlewski JD. Temperature effects on osmoregulatory physiology of juvenile anadromous fish. Global warming: implications for freshwater and marine fish. Cambridge University Press. 1997.
- Portella MC, Jomori RK, Leitão NJ, Menossi OCC, Freitas TM, Kojima JT, Lopes TS, Clavijo-Ayala JA, Carneiro DJ. Larval development of indigenous South American freshwater fish species, with particular reference to pacu (Piaractus mesopotamicus): A review. Aquaculture. 2014; 432:402–417. https://doi.org/10.1016/j.aquaculture.2014.04.032
- Fabregat TEHP, Damian J, Fialho NS, Costa D, Broggi JA, Pereira RG, Takata R. Toxicidade aguda ao sal comum e larvicultura intensiva do jundiá Rhamdia quelen em água salobra. Arq Brasil Med Vet Zootec. 2015; 67(2):547-554. https://doi.org/10.1590/1678-7660
- Diemer O, Neu DH, Sary C, Finkler JK, Boscolo WR, Feiden A. Artemia sp. na alimentação de larvas de jundiá (Rhamdia quelen). Ciênc Anim Brasil. 2012; 13(2):175-179. http://hdl.handle.net/11449/73262
- Schutz, JH, Weinfartner, M, Zaniboni-Filho, E, Nuñer, APO. Crescimento e sobrevivência de larvas de suruvi Steindachneridion scriptum nos primeiros dias de vida: influência de diferentes alimentos e fotoperíodos. Boletim do Instituto de Pesca. 2008; 34(3):443-451. https://institutodepesca.org/index.php/bip/article/view/813/796
- Fosse PJ, Mattos DC, Cardoso LD, Motta JHS, Jasper APS, Radael M, Andrade DR, Júnior V. Estratégia de coalimentação na sobrevivência e no crescimento de larvas de Betta splendens durante a transição alimentar. Arq Brasil Med Vet Zootec. 2013; 65(6):1801-1807. https://doi.org/10.1590/S0102-09352013000600030
- Oliveira LCC, Neto EDAS, Junuior ADSP, Eiras BJCF, Veras GC, de Moura LB, Campelo DAV. Effect of prey concentrations and salinized water on initial development of Pyrrhulina brevis (Steindachner, 1876), an Amazonian ornamental fish. Res Soc Devel. 2020; 9(8):e381985582 https://doi.org/10.33448/rsd-v9i8.5582
- Santos JCE, Pedreira MM, Luz RK. The effects of stocking density, prey concentration and feeding on Rhinelepis aspera (Spix & Agassiz, 1829) (Pisces: Loricariidae) larviculture. Act Scien. Biol Sci. 2012; 34:133–139. https://doi.org/10.4025/actascibiolsci.v34i2.8541
- Luz RK, Portella MC. Effect of prey concentrations and feed training on production of Hoplias lacerdae juvenile. An Acad Brasil Ciênc. 2015; 87:1125–1132. https://doi.org/10.1590/0001-3765201520140412
- Santos JCE, Souza Correia E, Luz RK. Effect of daily artemia nauplii concentrations during juvenile production of Lophiosilurus alexandri. Bol Inst Pes. 2015; 41(Special):771-776. https://institutodepesca.org/index.php/bip/article/view/1104/1081
- Araújo LM, Gonçalves Junior LP, E Silva W de S, Luz RK. Salinity and prey concentration on larviculture of killifish Hypsolebias radiseriatus (Cyprinodontiformes: Rivulidae). Acta Sci Anim Sci. 2020; 43:1–9. https://doi.org/10.4025/actascianimsci.v43i1.52075
- Reis RGA, Alves PCJ, Abe HA, da Costa Sousa N, Paixão PEG, Palheta GDA, de Melo NFAC, Fujimoto RY, Luz RK, Takata R. Feed management and stocking density for larviculture of the Amazon ornamental fish L333 king tiger pleco Hypancistrus sp. (Siluriformes: Loricariidae). Aqua Res. 2020; 52(5):1995-2003. https://doi.org/10.1111/are.15047
- Lee SM, Hwang UG, Cho SH. Effects of feeding frequency and dietary moisture content on growth, body composition and gastric evacuation of juvenile Korean rockfish (Sebastes schlegeli). Aquaculture. 2000; 187:399–409. https://doi.org/10.1016/S0044-8486(00)00318-5
- Santos FAC, Julio GSC, Luz RK. Stocking density in Colossoma macropomum larviculture, a freshwater fish, in recirculating aquaculture system. Aqua Res. 2021; 52(3):1185-1191. https://doi.org/10.1111/are.14976
- Santos FAC, Julio, GSC, Batista, FS, Miranda, LNL, Pedras, PPC, Luz, RK. High stocking densities in the larviculture of Colossoma macropomum in a recirculating aquaculture system: Performance, survival and economic viability. Aquaculture. 2022; 552:738016. https://doi.org/10.1016/j.aquaculture.2022.738016
- Santos SS, Lopes JP, dos Santos-Neto MA, Santos LS. Larvicultura do Tambaqui em diferentes densidades de estocagem. Rev Brasil Eng Pes. 2007; 2:18–25. https://doi.org/10.18817/repesca.v2i3.48
- Jomori RK, Luz RK, Takata R, Perez Fabregat TEH, Portella MC. Água levemente salinizada aumenta a eficiência da larvicultura de peixes neotropicais. Pes Agro Brasil. 2013; 48:809–815. https://doi.org/10.1590/S0100-204X2013000800001
- Pedreira, MM, Sipaúba-Tavares, LH. Effect of light green and dark brown colored tanks on survival rates and development of tambaqui larvae, Colossoma macropomum (Osteichthyes, Serrasalmidae). Acta Scien, 2001; 23(2):521-525. https://doi.org/10.4025/actascibiolsci.v23i0.2711
- Pedreira, MM., Schorer, M, Ferreira, AL. Utilização de diferentes dietas na primeira alimentação de larvas de tambaqui. Revista Brasileira de Saúde e Produção Anim. 2015; 16:440–448. https://doi.org/10.1590/s1519-99402015000200018
- Qiang J, Zhong CY, Bao JW, Liang M, Liang C, Li HX, He J, Xu P. The effects of temperature and dissolved oxygen on the growth, survival and oxidative capacity of newly hatched hybrid yellow catfish larvae (Tachysurus fulvidraco♀ × Pseudobagrus vachellii♂). Jour. Therm. Biol. 2019; 86:102436. https://doi.org/10.1016/j.jtherbio.2019.102436
- Miegel RP, Pain SJ, Van Wettere WHEJ, Howarth GS, Stone DAJ. Effect of water temperature on gut transit time, digestive enzyme activity and nutrient digestibility in yellowtail kingfish (Seriola lalandi). Aquaculture. 2010; 308:145–151. https://doi.org/10.1016/j.aquaculture.2010.07.036
- Barros IBA, Villacorta-Correa MA, Carvalho TB. Stocking density and water temperature as modulators of aggressiveness, survival and zootechnical performance in matrinxã larvae, Brycon amazonicus. Aquaculture 2019; 502:378-383. https://doi.org/10.1016/j.aquaculture.2018.12.070
- Almeida‐Val VMF, Gomes ARC, Lopes NP. Metabolic and physiological adjustments to low oxygen and high temperature in fishes of the Amazon. Fish Physiology. 2005; 21:443-500. https://doi.org/10.1016/S1546-5098(05)21010-5
- Kramer DL, Lindsey CC, Moodie GEE, Stevens ED. The fishes and the aquatic environment of the central Amazon basin, with particular reference to respiratory patterns. Canad Jour Zool. 1978; 56:717–729. https://doi.org/10.1139/z78-101
- Hochachka PW, Somero GN. Biochemical adaptation: mechanism and process in physiological evolution. Oxford university press; 2002.
- Conceição LEC, Dersjant-Li Y, Verreth JAJ. Cost of growth in larval and juvenile African catfish (Clarias gariepinus) in relation to growth rate, food intake and oxygen consumption. Aquaculture. 1998; 161:95–106. https://doi.org/10.1016/S0044-8486(97)00260-3
- Drummond CD, Murgas LDS, Vicentini B. Growth and survival of tilapia Oreochromis niloticus (Linnaeus, 1758) submitted to different temperatures during the process of sex reversal. Ciênc Agrotec. 2009; 33:895–902. https://doi.org/10.1590/s1413-70542009000300033
- Luz RK, Zaniboni-Filho E. Utilização de diferentes dietas na primeira alimentação do mandi-amarelo (Pimelodus maculatus , Lacépéde). Acta Scie Bio Scie. 2001; 23:483–489. https://doi.org/10.4025/actascibiolsci.v23i0.2704
- Lombardi DC, Gomes LDC. Substituição de alimento vivo por alimento inerte na larvicultura intensiva do tambacu (♀ Colossoma macropomum X ♂ Piaractus mesopotamicus). Acta Scie Ani Scie; 2009; 30:467–472. https://doi.org/10.4025/actascianimsci.v30i4.3835
- Jomori RK, Carneiro DJ, Malheiros EB, Portella MC. Growth and survival of pacu Piaractus mesopotamicus (Holmberg, 1887) juveniles reared in ponds or at different initial larviculture periods indoors. Aquaculture. 2003; 221:277–287. https://doi.org/10.1016/S0044-8486(03)00069-3
- Hernández DR, Agüero CH, Santinón JJ, González AO, Sánchez, S. Growth, survival and bone alterations in Piaractus mesopotamicus larvae under different rearing protocols. Ciên Rur. 2015; 45:1667–1673. https://doi.org/10.1590/0103-8478cr20141139