Skip to main navigation menu Skip to main content Skip to site footer

Histological and immune response in the fish Centropomus viridis elicited by the parasite Rhabdosynochus viridisi

Respuesta histológica e inmune en el pez Centropomus viridis causadas por el parásito Rhabdosynochus viridisi



How to Cite
López-Moreno, D., Yazdi, Z. ., Morales-Serna, F. N. ., Martínez-Brown, J. M. ., Ibarra-Castro, L. ., García-Gasca, A. ., Abad-Rosales, S. M. ., Lozano-Olvera, R. ., Fajer-Ávila, E. J. ., & Soto, E. . (2024). Histological and immune response in the fish Centropomus viridis elicited by the parasite Rhabdosynochus viridisi. Journal MVZ Cordoba, 29(2), e3381. https://doi.org/10.21897/rmvz.3381

Dimensions
PlumX
Dania López-Moreno
Zeinab Yazdi
Francisco N. Morales-Serna
Juan M. Martínez-Brown
Leonardo Ibarra-Castro
Alejandra García-Gasca
Selene M. Abad-Rosales
Rodolfo Lozano-Olvera
Emma J. Fajer-Ávila
Esteban Soto

Dania López-Moreno,

Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Sinaloa, México


Zeinab Yazdi,

University of California, School of Veterinary Medicine, Department of Medicine and Epidemiology, Davis, CA, USA


Francisco N. Morales-Serna,

Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Mazatlán 82040, Sinaloa, México


Juan M. Martínez-Brown,

Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Sinaloa, México


Leonardo Ibarra-Castro,

University of Florida, Whitney Laboratory for Marine Bioscience, FL, USA


Alejandra García-Gasca,

Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Sinaloa, México


Selene M. Abad-Rosales,

Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Sinaloa, México


Rodolfo Lozano-Olvera,

Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Sinaloa, México


Emma J. Fajer-Ávila,

Centro de Investigación en Alimentación y Desarrollo, Mazatlán 82112, Sinaloa, México


Esteban Soto,

University of California, School of Veterinary Medicine, Department of Medicine and Epidemiology, Davis, CA, USA


Objective. To analyze histological and immunological changes in the Pacific white snook (PWS) Centropomus viridis during primary infection and re-infection with the monogenean Rhabdosynochus viridisi. Materials and methods. Samplings were performed at three timepoints (0,1, and 2). Histological alterations in gills were evaluated by the severity degree and the degree of tissue change. RT-qPCR assays were developed to investigate the expression of il1B, il8, il10, il12, il17, igM, igT, ifnγ, tnfα, tbet, hsp70, foxp3a, stat4, and cmip in gills and head kidney. Results. The prevalence of infection was 100% in challenged fish. During the primary infection, the mean intensity was 152 parasites per fish at Time 1 and 94 at Time 2, while in the reinfection, it was 367 parasites at Time 1 and 129 at Time 2. Histological analysis of gills showed fusion of the secondary lamellae, hyperplasia, infiltration of mononuclear inflammatory cells, and increase of chloride cells in both primary infections and reinfections. Only the expression of cmip in gills at Time 1 was significantly higher in reinfections than in primary infections, and the expression of il12β showed a fold-change value >100 in head kidney at Time 2 in primary infections. Conclusions. The monogenean R. viridisi may cause histological alteration in its fish host. As showed by the decrease of the intensity of infection from Time 1 to Time 2, it seems that the PWS is able to combat R. viridisi; however, our immunological analysis did not reveal strong evidence of a possible mechanism.


Article visits 108 | PDF visits


Downloads

Download data is not yet available.
  1. Alvarez-Lajonchère L, Tsuzuki MY. A review of methods for Centropomus spp. (snooks) aquaculture and recommendations for the establishment of their culture in Latin America. Aquac Res. 2008; 39(7):684–700. https://doi.org/10.1111/j.1365-2109.2008.01921.x
  2. Baldini G, Santamaría-Miranda A, Martínez-Brown JM, Ibarra-Castro L. Technical-economic viability of white snook Centropomus viridis culture in floating cages in a coastal lagoon in northwestern Mexico. Aquac Rep. 2022; 23:101048. https://doi.org/10.1016/j.aqrep.2022.101048
  3. Morales-Serna FN, López-Moreno DG, Medina-Guerrero RM, Abad-Rosales SM, Martínez-Brown JM, Ibarra-Castro L, Fajer-Avila EJ. Toxicity of formalin for juvenile Centropomus viridis and in vitro efficacy against the parasite Rhabdosynochus sp. (Monogenea: Diplectanidae). J Appl Ichthyol. 2020; 36(5):740–744. https://doi.org/10.1111/jai.14077
  4. Caña-Bozada V, Llera-Herrera R, Fajer-Avila EJ, Morales-Serna FN. Mitochondrial genome of Rhabdosynochus viridisi (Monogenea: Diplectanidae), a parasite of Pacific white snook Centropomus viridis. J Helminthol. 2021; 95:e21:1–5. https://doi.org/10.1017/S0022149X21000146
  5. AVMA. Guidelines for the euthanasia of animals: 2020 edition. Schaumburg, IL: American Veterinary Medical Association. 2020.
  6. Morales-Serna FN, Martínez-Brown JM, Avalos-Soriano A, Sarmiento-Vásquez S, Hernández-Inda ZL, Medina-Guerrero RM, Fajer-Ávila EJ, Ibarra-Castro L. The efficacy of geraniol and ß-citronellol against freshwater and marine monogeneans. J Aquat Anim Health. 2020; 32(3):127–132. https://doi.org/10.1002/aah.10109
  7. Reiczigel J, Marozzi M, Fábián I, Rózsa L. Biostatistics for parasitologists – a primer to quantitative parasitology. Trends Parasitol. 2019; 35(4):277–281. https://doi.org/10.1016/j.pt.2019.01.003
  8. Lightner DV. A Handbook of Shrimp Pathology and Diagnostic Procedures for Diseases of Cultured Penaeid Shrimp. World Aquaculture Society, Baton Rouge, LA. 1996.
  9. Poleksić V, Mitrović-Tutundžić V. Fish gills as a monitor of sublethal and chronic effects of pollution. In: Müller R, Lloyd R, editors. Sublethal and Chronic Effects of Pollutants on Freshwater Fish. Oxford: New Books; 1994.
  10. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001; 25(4):402–408. https://doi.org/10.1006/meth.2001.1262
  11. Andree KB, Roque A, Duncan N, Gisbert E, Estevez A, Tsertou MI, Katharios P. Diplectanum sciaenae (Van Beneden & Hesse, 1863) (Monogenea) infecting meagre, Argyrosomus regius (Asso, 1801) broodstock in Catalonia, Spain. A case report. Vet Parasitol Reg Stud Reports. 2015; 1–2:75–79. https://doi.org/10.1016/j.vprsr.2016.02.006
  12. Sitjà-Bobadilla A. Living off a fish: a trade-off between parasites and the immune system. Fish Shellfish Immunol. 2008; 25(4):358–372. https://doi.org/10.1016/j.fsi.2008.03.018
  13. Hirazawa N, Hagiwara H, Takano R, Noguchi M, Narita M. Assessment of acquired protection levels against the parasite Neobenedenia girellae (Monogenea) between body surface sites including fins of amberjack Seriola dumerili (Carangidae) and the skin in response to the parasite infection. Aquaculture. 2011; 310(3-4):252–258. https://doi.org/10.1016/j.aquaculture.2010.10.029
  14. Zhi T, Huang C, Sun R, Zheng Y, Chen J, Xu X, et al. Mucosal immune response of Nile tilapia Oreochromis niloticus during Gyrodactylus cichlidarum infection. Fish Shellfish Immunol. 2020; 106:21–27. https://doi.org/10.1016/j.fsi.2020.07.025
  15. Mirabent-Casals M, Caña-Bozada VH, Morales-Serna FN, García-Gasca A. Predicted secretome of the monogenean parasite Rhabdosynochus viridisi: hypothetical molecular mechanisms for host-parasite interactions. Parasitologia. 2023; 3:33–45. https://doi.org/10.3390/parasitologia3010004
  16. Buchmann K. Antiparasitic immune responses. In Buchmann K, Secombes CJ, editors. Principles of Fish Immunology. Berlin: Springer. 2022. https://doi.org/10.1007/978-3-030-85420-1_17
  17. Robertson S, Bradley JE, MacColl ADC. No evidence of local adaptation of immune responses to Gyrodatylus in three-spined stickleback (Gasterosteus aculeatus). Fish Shellfish Immunol. 2017; 60:275–281. https://doi.org/10.1016/j.fsi.2016.11.058
  18. Pérez-Cordón G, Estensoro I, Benedito-Palos L, Calduch-Giner JA, Sitjà-Bobadilla A, Pérez-Sánchez J. Interleukin gene expression is strongly modulated at the local level in a fish–parasite model. Fish Shellfish Immunol. 2014; 37(2):201–208. https://doi.org/10.1016/j.fsi.2014.01.022
  19. Zhang L, Zhang BC, Hu YH. Rock bream (Oplegnathus fasciatus) IL-12p40: Identification, expression, and effect on bacterial infection. Fish Shellfish Immunol. 2014; 39(2):312-320. https://doi.org/10.1016/j.fsi.2014.05.026
  20. Tu X, Qi X, Huang A, Ling F, Wang G. Cytokine gene expression profiles in goldfish (Carassius auratus) during Gyrodactylus kobayashii infection. Fish Shellfish Immunol. 2019; 86:116–124. https://doi.org/10.1016/j.fsi.2018.11.035

Sistema OJS 3.4.0.3 - Metabiblioteca |