Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Effect of the diet traditional and non-traditional on the respiration and excretion in larvae of white shrimp Litopenaeus vannamei

Effect of the diet traditional and non-traditional on the respiration and excretion in larvae of white shrimp Litopenaeus vannamei



Abrir | Descargar

Cómo citar
Medina-Jasso, M. A., Arzola-González J. F., Piña-Valdez P., & Nieves-Soto, M. (2015). Effect of the diet traditional and non-traditional on the respiration and excretion in larvae of white shrimp Litopenaeus vannamei. Revista MVZ Córdoba, 20(supl), 4917-4928. https://doi.org/10.21897/rmvz.7

Dimensions
PlumX
María Alejandra Medina-Jasso
Juan Francisco Arzola-González
Pablo Piña-Valdez
Mario Nieves-Soto

ABSTRACT

Objetive. It was studied the respiration and ammoniacal excretion of zoeas and mysis of Litopenaeus vannamei fed with the diet used traditionally (of microalgae and nauplios of artemia) and another alternative (not traditional) of microalgae with rotifers. Materials and methods. After four hours the oxygen consumption and ammonia excretion in BOD bottles with 60 larvae (closed respirometers) was estimated. The concentrations of O2 and NH4+ were measured with an electrode polarográfico in the first case and with the indophenol blue technique for the second. Results. In zoea, oxygen consumption increased with development and showed statistical differences (p=0.023). In mysis, the oxygen consumption were significance in the traditional diet, whereas no differences were alternative (p=0.003). In both stages for the ammoniacal excretion increased development stage and there were detected statistical difference (p<0.001), although to the diets were not noticed significant differences. Conclusions. A higher energy absorption for zoea (I, II y III) what mysis (I, II y III) larvae was obtained, this is likely an interaction between rates of respiration and excretion caused by variations in the efficiency of absorption by the larvae. The weights obtained in both larvae were not supplied with differences between diets.


Visitas del artículo 848 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Arzola GJ, Pi-a VP, Nieves SM, Medina JA. Supervivencia de postlarvas de camarón blanco Litopenaeus vannamei a diferentes salinidades y temperaturas. Rev MVZ Córdoba 2013; 18(2):3618-3625.
  2. Pi-a VP, Nieves M, Ramos L, Chavira CO, Voltolina D. Survival, growth and feeding efficiency of Litopenaeus vannamei protozoea larvae, fed different rations of diatom Chaetoceros muelleri. Aquacult 2005; 249(1-4):431-437. http://dx.doi.org/10.1016/j.aquaculture.2005.04.037
  3. Pi-a VP, Voltolina D, Nieves M, Robles M. Survival, development and growth of the pacific white shrimp Litopenaeus vannamei protozoea larvae, fed with monoalgal and mixed diets. Aquacult 2006; 253(1-4):523-530. http://dx.doi.org/10.1016/j.aquaculture.2005.07.016
  4. Páez, OF. Retos y perspectivas de la camaronicultura en la zona costera. Rev Lat Rec Nat 2005; 1(1):21-31.
  5. Pi-a VP, Medina JA, Nieves M, Leal S, López-Elías J, Guerreo MA. Cultico de cuatro especies de microalgas con diferentes fertilizantes utilizados en acuicultura. Rev Invest Mar 2007; 28(3):225-236.
  6. Isiordia PE, Puello A, D'Abramo L, González H. Evaluación de la actividad enzimática y contenido de proteína en larvas de camarón blanco Litopenaeus vannamei alimentadas con diferentes dietas. Redvet 2006; 7(4):1-13.
  7. Rojo CA, Román RJ, Rodríguez MG, Nieves SM, Pi-a VP, Medina JA. Balance energético del rotífero Brachionus rotundiformis alimentado con cuatros especies de microalgas. Univ Cienc 2012; 28(3):231-244.
  8. Pi-a VP, Nieves SM, Voltolina D, Chavira C. Crecimiento, desarrollo y supervivencia de mysis de (Litopenaeus vannamei) alimentadas con nauplios de Artemia y con el rotífero brachionus plicatilis. Rev Invest Mar 2004; 25(3):245-251.
  9. Planas M, Vázquez JA, Marqués J, Pérez-Lomba R, González MP, Murado M. Enhancement of rotifer brachionus plicatilis growth by using terrestrial lactic acid bacteria. Aquacult 2004; 240(1-4):313-329. http://dx.doi.org/10.1016/j.aquaculture.2004.07.016
  10. Prieto M, Casta-o F, Sierra J, Logato P, Bolero J. Alimento vivo en la larvicultura de peces marinos: copépodos y mesocosmos. Rev MVZ Córdoba 2006; 11(1):30-36.
  11. Arzola GJ, Flores LF, Izabal A, Gutiérrez Y. Crecimiento de camarón blanco Litopenaeus vannamei en un estanque rústico a baja salinidad. Aquatic 2008; 28(1):8-15.
  12. Spanopoulus HM, Martínez CA, Vanegas RC, Rosas C, Ross LG. The combined effects of salinity and temperature on the oxygen consumption of juvenile shrimps Litopenaeus stylirostris. Aquacult 2005; 244(1-4):341-348. http://dx.doi.org/10.1016/j.aquaculture.2004.11.023
  13. Nieves M, López D, Medina MA, Pi-a P, Leal S, López EJ. Producción y calidad de Chaetoceros muelleri a diferentes concentraciones de nutrientes y densidades de inóculos. Rev Invest Mar 2009; 30(2):123-133.
  14. Gelabert R, Brito R, Gaxiola MG, Castro T, Rosas C. Efecto de nauplios de Artemia franciscana enriquecidos sobre el crecimiento, supervivencia y resistencia al estrés de postlarvas (PL5-40) de Litopenaeus vannamei. Univ Cien 2008; 24(1):29-40.
  15. Re AA, Díaz HF. Effect of different oxygen concentrations on physiological energetic of blue shrimp Litopenaeus stylirostris. O Zool J 2011; 4(1):1-8. http://dx.doi.org/10.2174/1874336601104010001
  16. Valenzuela QW, Rodríguez QG, Ponce PP, Esparza LH. Efecto de diferentes combinaciones de temperatura y salinidad sobre el consumo específico de oxígeno en el camarón blanco Litopenaeus vannamei. Rev Biol Mar Ocean 2011; 46(3):303-311. http://dx.doi.org/10.4067/S0718-19572011000300002
  17. Gnaiger E, Forstner H. (Eds) Polarographic oxygen sensors. Berlin. 1983.
  18. Rodier J. Análisis de las aguas: naturales, residuales y agua de mar. Ed. Omega, Barcelona. 1981.
  19. Elliot JM, Davison W. Energy equivalents of oxygen consumption in animal energetic. Oecología 1975; 19(1):195-201. http://dx.doi.org/10.1007/BF00345305
  20. Mayzaud P, Conover RJ. O:N atomic ratio as a tool to describe zooplankton metabolism. Mar Ecol Prog Ser 1988; 45(1):289-302. http://dx.doi.org/10.3354/meps045289
  21. Zar JH. Biostatistical analysis. Upper Saddle River, USA: Prentice-Hall Inc; 2009.
  22. StatSoft Inc. Statistica for Window version 7.0. Tulsa, Oklahoma, USA: StatSoft Inc; 2004.
  23. Re AD, Díaz F, Sierra E, Gómez-Jiménez S. Oxygen consumption, ammonium excretion and osmoregulatory capacity of Litopenaeus stylirostris exposed to different combinations of temperature and salinity. Cienc Mar 2004; 30(3):443-453.
  24. Brito R, Chimal ME, Gelabert R, Gaxiola G, Rosas C. Effect of artificial and natural diets on energy allocation in Litopenaues setiferus and Litopenaeus vannamei early postlarvae. Aquacult 2004; 237(4):517-535. http://dx.doi.org/10.1016/j.aquaculture.2004.05.012
  25. Gallardo P, Martínez G, Brito A, Barrera J, Pedroza-Islas R, Cuzon G, et al Effect of Artemia nauplii replacement by an artificial feed containing kril hydrolysate on ingestion rate, oxygen consumption and energy budget in the mysis of Litopenaeus vannamei. Nauplius 2003; 11(2):69-81.
  26. Lemos D, Phan VN, Álvarez G. Growth, oxygen consumption, ammonia-N excretion, biochemical composition and energy content of Litopenaeus setiferus (Crustacea: Decapoda: Penaeidae) early postlarvae in different salinities. J Exp Mar Biol Ecol 2001; 261(1):55-74. http://dx.doi.org/10.1016/S0022-0981(01)00260-X

Sistema OJS 3.4.0.3 - Metabiblioteca |