Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Produccion in vitro de gas metano por gramineas forrajeras tropicales

In vitro production of gas methane by tropical grasses



Cómo citar
Ley de Coss, A., Guerra-Medina, E., Montañez-Valdez, O., Guevara H, F., Pinto R, R., & Reyes-Gutiérrez, J. A. (2018). Produccion in vitro de gas metano por gramineas forrajeras tropicales. Revista MVZ Córdoba, 23(3), 6788-6798. https://doi.org/10.21897/rmvz.1368

Dimensions
PlumX
Alejandro Ley de Coss
Enrique Guerra-Medina
Oziel Montañez-Valdez
Francisco Guevara H
René Pinto R
José Andrés Reyes-Gutiérrez

Objetivo. Estimar la producción de metano (CH4) por gramíneas tropicales fermentadas in vitro. Materiales y métodos. Una muestra de 20 g de materia seca de Cynodon nlemfuensis, Hyparrhenia rufa, Megathyrsus maximus y Digitaria swazilandensis más 200 ml de medio de cultivo se depositaron por triplicado en frascos de acero inoxidable estériles con flujo de CO2, se inocularon con 20 ml de líquido ruminal de bovino e incubaron a 38 °C por 24, 48, 72 y 96 h. Se evaluó producción total de gas, CH4, ácidos grasos volátiles, y pH en un diseño completamente al azar con tres repeticiones por tratamiento y la comparación de medias con Tukey; la concentración de bacterias totales y celulolíticas, se analizaron con la prueba de Kruskal-Wallis, y el procedimiento GLM con datos de rangos independientes de Wilcoxon. Resultados. H. rufa y D. swazilandensis tuvieron la menor producción total de gases (p<0.05), mientras que D. swazilandensis tuvo menor producción de CH4, mayor producción de ácido propónico (p<0.05) y menor pH a las 96 horas de incubación (p<0.05). D. swazilandensis mostró mayor eficiencia en la producción de energía por la menor producción de CH4 y mayor producción de propionato. La concentración de bacterias totales fue similar entre tratamientos (p>0.05), mientras que la concentración de bacterias celulolíticas fue menor en C. nlemfuensis y D. swazilandensis a la hora 96 de incubación (p<0.05). Conclusiones. La Digitaria swazilandensis, mostró condiciones favorables para tener menor producción total de metano y gases totales. 


Visitas del artículo 2062 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Dong LF, Yan T, Ferris CP, Mcdowell DA, Gordon A. Is there a relationship between genetic merit and enteric methane emission rate of lactating Holstein-Friesian dairy cows? Animal 2015; 9(11):1807-1812. https://doi.org/10.1017/S1751731115001445
  2. Hynes DN, Stergiadis S, Gordon A, Yan T. Effects of concentrate crude protein content on nutrient digestibility, energy utilization, and methane emissions in lactating dairy cows fed fresh-cut perennial grass. J Dairy Sci 2016; 99(11):8858–8866. https://doi.org/10.3168/jds.2016-11509
  3. Zheng Z, Liu J, Yuan X, Wang X, Zhu W, Yang F, et al. Effect of dairy manure to switchgrass co-digestion ratio on methane production and the bacterial community in batch anaerobic digestion. Appl Energy 2015; 151:249–57. https://doi.org/10.1016/j.apenergy.2015.04.078
  4. I-amagua-Uyaguari JP, Jenet A, Alarcón-Guerra LG, Vilchez-Mendoza SJ, Casasola-Coto F, Wattiaux MA. Impactos económicos y ambientales de las estrategias de alimentación en lecherías de Costa Rica. Agron Mesoam 2016; 1(27):1–17.
  5. Chaokaur A, Nishida T, Phaowphaisal I, Sommart K. Effects of feeding level on methane emissions and energy utilization of Brahman cattle in the tropics. Agric Ecosyst Environ 2015; 199:225–230. https://doi.org/10.1016/j.agee.2014.09.014
  6. Hill J, McSweeney C, Wright ADG, Bishop-Hurley G, Kalantar-zadeh K. Measuring methane production from ruminants. Trends in biotechnol 2016; 34(1):26-35. https://doi.org/10.1016/j.tibtech.2015.10.004
  7. Stewart C, Paniagua C, Dinsdale D. Selective isolation and characteristics of Bacteriodes succinogenes from the rumen of a cow. Appl Environ Microbiol 1981; 4(2):504-510.
  8. Galindo J, Marrero Y, González N, Sosa A. Efecto de preparados con levaduras Saccharomyces cerevisiae y LEVICA-25 viables en los metanógenos y metanogénesis ruminal in vitro. Rev Cuba 2010; 44(3):273-279.
  9. Appuhamy JADRN, France J, Kebreab E. Models for predicting enteric methane emissions from dairy cows in North America, Europe, and Australia and New Zealand. Glob Chang Biol 2016; 22(9):3039–3056. https://doi.org/10.1111/gcb.13339
  10. AOAC. Official Methods of Analysis (19th) Association of Official Analytical Chemists. Arligton (VA), Washington DC: AOAC; 2012.
  11. Van Soest P, Robertson J, Lewis B. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 1991; 74(10):3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  12. Williams B. Cumulative gas-production techniques for forage evaluation. En: Givens DI, Owen E, Axford RFE, Omed HM, editors. Forage Evaluation in Ruminant Nutrition; 2000. p. 189-213. https://doi.org/10.1079/9780851993447.0189
  13. Cobos M, Yokoyama M. Clostridium paraputrificum var. Ruminantium: Colonisation and degradation of shrimp carapaces. En: Workshop on Rumen Ecology Research Planning, Addis Ababa, Ethiopia; 1995. p.151-162.
  14. Stolaroff JK, Keith DW, Lowry G V. Carbon Dioxide Capture from Atmospheric Air using Sodium Hydroxide Spray. Environ Sci Technol 2008; 42(8):2728–35. https://doi.org/10.1021/es702607w
  15. Lin C, Chen B. Carbon dioxide absorption into NaOH solution in a cross-flow rotating packed bed. J Ind Eng Chem 2007; 13(7):1083-1090.
  16. Ley de Coss A, Peralta MC. Formulación de un medio de cultivo anaerobio para protozoarios ruminales y evaluación in vitro en la capacidad desfaunante del extracto de plantas. Rev Cient FCV-LUZ 2011; 21(1):43-49.
  17. Ley de Coss A, Arce-Espino C, Cobos-Peralta M. Estudio comparativo entre la cepa de Pediococcus acidilactici aislada del rumen de borregos y un consorcio de bacteria ruminales. Agrociencia 2013; 47(6):567-568.
  18. Cobos M, Pérez-Sato M, Piloni-Martini J. Evaluation of diets containing shrimp shell waste and an inoculum of Streptococcus milleri on rumen bacteria and performance of lambs. Anim Feed Sci Tech 2007; 132(3):324-330. https://doi.org/10.1016/j.anifeedsci.2006.03.019
  19. SAS. Statistical Analisys Software, SAS/STAT. Versión 9.3 Edition. Cary (NC): SAS institute Inc; 2011.
  20. Theodorou M, France J. Rumen microorganisms and their interactions. En: Forbes JM, France J, editors. Quantitative Aspects of Ruminant Digestion and Metabolism. CAB International, Wallingford, U.K Quant Asp Rumin. 2005; p.145-162. https://doi.org/10.1079/9780851998145.0207
  21. Avellaneda CJH, Monta-ez-Valdez OD, González-Mu-oz S, Pinos-Rodríguez J, Bárcena-Gama R, Hernández-Garay A. Effect of exogenous fibrolytic enzymes on dry matter and cell wall in vitro digestibility of Guinea grass hay. J Appl Ani Res 2009; 36(2):199-202. https://doi.org/10.1080/09712119.2009.9707059
  22. Dijkstra J, Ellis JL, Kebreab E, Strathe AB, López S, France J, Bannink A. Ruminal pH regulation and nutritional consequences of low pH. Anim Feed Sci Tech 2012; 172(1):22-33. https://doi.org/10.1016/j.anifeedsci.2011.12.005
  23. Russell JB, Murk RE, Weimer PJ. Quantitative analysis of cellulose degradation and growth of cellulolytic bacteria in the rumen FEMS Microbiol Ecol 2009;67(2):183-197. https://doi.org/10.1111/j.1574-6941.2008.00633.x
  24. Friggens NC, Oldham JD, Dewhurst RJ, Horgan G. Proportions of volatile fatty acids in relation to the chemical composition of feeds based on grass silage. J Dairy Sci 1998; 81(5):1331–44. https://doi.org/10.3168/jds.S0022-0302(98)75696-6
  25. Danielsson R, Dicksved J, Sun L, Gonda H, Müller B, Schnürer A, Bertilsson J. Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure. Front Microbiol 2017; 8:A-226. https://doi.org/10.3389/fmicb.2017.00226
  26. Rico DE, Chouinard PY, Hassanat F, Benchaar C, Gervais R. Prediction of enteric methane emissions from Holstein dairy cows fed various forage sources. animal, 2016;10(2):203-211. https://doi.org/10.1017/S1751731115001949
  27. Calsamiglia S, Cardozo PW, Ferret a, Bach a. Changes in rumen microbial fermentation are due to a combined effect of type of diet and pH. J Anim Sci 2008; 86(3):702–711. https://doi.org/10.2527/jas.2007-0146
  28. McAllister TA, Newbold CJ. Redirecting rumen fermentation to reduce methanogenesis. Anim Prod Scie 2008; 48(2):7-13. https://doi.org/10.1071/EA07218
  29. Morgavi DP, Forano E, Martin C, Newbold CJ. Microbial ecosystem and methanogenesis in ruminants. Animal 2010;4(7):1024-1036. https://doi.org/10.1017/S1751731110000546
  30. Gidlund H, Hetta M, Krizsan SJ, Lemosquet S, Huhtanen P. (2015). Effects of soybean meal or canola meal on milk production and methane emissions in lactating dairy cows fed grass silage-based diets. J Anim Sci 2015;98(11):8093-8106. https://doi.org/10.3168/jds.2015-9757
  31. Ranilla MJ, Jouany JP, Morgavi DP. Methane production and substrate degradation by rumen microbial communities containing single protozoal species in vitro. Lett Appl Microbiol 2007;45(6):675-680. https://doi.org/10.1111/j.1472-765X.2007.02251.x

Sistema OJS 3.4.0.3 - Metabiblioteca |