Consideraciones para la obtención de sangre en tortugas: sitios de venopunción y anticoagulantes

##plugins.themes.bootstrap3.article.main##

Cristian Camilo Rodríguez-Almonacid
Carolina Maria Vargas-León
Carlos Alfonso Moreno-Torres
Nubia Estela Matta Camacho
Resumen

Objetivo. Evaluar diferentes puntos de venopunción y el uso de dos anticoagulantes para la obtención de muestras sanguíneas en tortugas. Materiales y métodos. Se muestrearon 82 individuos de las especies Trachemys callirostris, Podocnemis unifilis y Chelonoidis carbonaria. Los puntos de venopunción evaluados fueron: seno venoso subcaparacial, vena coccígea dorsal y vena yugular; y se compararon dos anticoagulantes: heparina de sodio y EDTA. Resultados. A partir de la vena yugular se obtuvieron muestras sanguíneas sin hemodilución y en un volumen suficiente para realizar análisis hematológicos. Por el contrario, a partir de los otros sitios de venopunción se obtuvieron mayoritariamente muestras hemodiluidas. Las muestras de sangre obtenidas a partir de C. carbonaria se hemolizaron tras su almacenamiento en EDTA (40 µl/ml de sangre), lo que no se evidenció al utilizar heparina de sodio (100 UI/ml de sangre) como anticoagulante. Conclusiones. La vena yugular es el sitio de venopunción más recomendable para la extracción de muestras sanguíneas con fines clínicos. La heparina de sodio fue el anticoagulante de elección para almacenar dichas muestras al no inducir hemólisis en estas.

Palabras clave

Descargas

Los datos de descargas todavía no están disponibles.

##plugins.themes.bootstrap3.article.details##

Biografía del autor/a / Ver

Cristian Camilo Rodríguez-Almonacid, Universidad Nacional de Colombia

Cristian C. Rodríguez-Almonacid

Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Biología, Grupo de Estudio Relación Parásito-Hospedero. 111321 Bogotá, Colombia

Referencias / Ver

Moreno LA, Andrade GI, Ruíz-Contreras LF. Biodiversidad 2016. Estado y tendencias de la biodiversidad continental de Colombia. Bogotá, Colombia: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt; 2016. http://repository.humboldt.org.co//handle/20.500.11761/32962

Gibbons JW, Scott DE, Ryan TJ, Buhlmann KA, Tuberville T, Metts BS, et al. The Global Decline of Reptiles, Déjà Vu Amphibians. Bioscience. 2000; 50(8):653–66. https://doi.org/10.1641/0006-3568(2000)050[0653:TGDORD]2.0.CO;2

Hofmeyr MD, Henen BT, Walton S. Season, sex and age variation in the haematology and body condition of geometric tortoises Psammobates geometricus. African Zool. 2017; 52(1):21–30. https://doi.org/10.1080/15627020.2017.1284575

Arcila VH. Hematología y química sérica en hembras quelonios (Trachemys scripta callirostris) en la ribera del río Lebrija, Puerto Wilches (Santander) Parte I. Spei Domus. 2005; 1(2). https://revistas.ucc.edu.co/index.php/sp/article/view/568

Carrascal J, Negrete H, Rojano C, Álvarez G, Chacón J, Linares J. Caracterización hematológica de hicoteas (Trachemys callirostris Gray, 1856) en Córdoba, Colombia. Rev Med Vet. 2014; 28:43. https://doi.org/10.19052/mv.3180

Oliveira-Júnior AA, Tavares-Dias M, Marcon JL. Biochemical and hematological reference ranges for Amazon freshwater turtle, Podocnemis expansa (Reptilia: Pelomedusidae), with morphologic assessment of blood cells. Res Vet Sci. 2009; 86(1):146–151. https://doi.org/10.1016/j.rvsc.2008.05.015

Rossini M, Blanco PA, Marín E, Comerma-Steffensen S, Zerpa H. Haematological values of post-laying Arrau turtle (Podocnemis expansa) in the Orinoco River, Venezuela. Res Vet Sci. 2012; 92(1):128–131. https://doi.org/10.1016/j.rvsc.2010.10.026

Rojas G, Varillas L. Hemograma de la Tortuga Taricaya (Podocnemis unifilis). Hosp Vet. 2013; 5(1):13–15. http://www.rhv.cl/index.php?option=com_docman&task=doc_download&gid=67&Itemid=

Ferronato BO, Genoy-puerto A, Piña CI, Souza FL, Verdade LM, Matushima ER. Notes on the hematology of free-living Phrynops geoffroanus (Testudines: Chelidae) in polluted rivers of Southeastern Brazil. Zool. 2009; 26(4):795–798. https://doi.org/10.1590/S1984-46702009000400027

Muñoz-Pérez JP, Lewbart GA, Hirschfeld M, Alarcón-Ruales D, Denkinger J, Castañeda JG, et al. Blood gases, biochemistry and haematology of Galápagos hawksbill turtles (Eretmochelys imbricata). Conserv Physiol. 2017; 5(1). https://doi.org/10.1093/conphys/cox028

Lewbart GA, Griffioen JA, Savo A, Muñoz-Pérez JP, Ortega C, Loyola A, et al. Biochemistry and hematology parameters of the San Cristóbal Galápagos tortoise (Chelonoidis chathamensis). Conserv Physiol. 2018; 6(1). https://doi.org/10.1093/conphys/coy004

Cabrera M, Li O, Gálvez H, Sánchez N, Rojas G. Valores hematológicos de la tortuga motelo (Geochelone denticulata) mantenida en cautiverio. Rev Investig Vet del Peru. 2011; 22(2):144–150. https://doi.org/10.15381/rivep.v22i2.287

Naguib M. How to take blood from a tortoise. Companion Anim. 2016; 21(7):422–425. https://doi.org/10.12968/coan.2016.21.7.422

Crawshaw GJ, Holz P. Comparison of Plasma Biochemical Values in Blood and Blood-Lymph Mixtures from Red-eared Sliders, Trachemys scripta elegans. Bull Assoc Reptil Amphib Vet. 1996; 6(2):7–9. https://doi.org/10.5818/1076-3139.6.2.7

Muro J, Cuenca R, Pastor J, Vinas L, Lavin S. Effects of Lithium Heparin and Tripotassium EDTA on Hematologic Values of Hermann’s Tortoises (Testudo hermanni). J Zoo Wildl Med. 1998; 29(1):40–44. https://www.jstor.org/stable/20095714

Perpiñán D. Chelonian haematology: 1. Collection and handling of samples. In Pract. 2017; 39(5):194–202. https://doi.org/10.1136/inp.j1692

Innis C, Knotek Z. Tortoises and Freshwater Turtles. En: Heatley J, Russell K, editors. Exotic Animal Laboratory Diagnosis. 1° ed. Hoboken, USA: Wiley; 2020. https://doi.org/10.1002/9781119108610.ch16

Redrobe S, MacDonald J. Sample Collection and Clinical Pathology of Reptiles. Vet Clin North Am Exot Anim Pract. 1999; 2(3):709–730. https://doi.org/10.1016/S1094-9194(17)30118-4

Mans C. Venipuncture techniques in chelonian species. Lab Anim. 2008; 37(7):303–304. https://doi.org/10.1038/laban0708-303

Hattingh J, Smith EM. Anticoagulants for avian and reptilian blood: Heparin and EDTA. Pflügers Arch Eur J Physiol. 1976; 363(3):267–269. https://doi.org/10.1007/BF00594613

Natt MP, Herrick CA. A New Blood Diluent for Counting the Erythrocytes and Leucocytes of the Chicken. Poult Sci. 1952; 31(4):735–738. https://doi.org/10.3382/ps.0310735

Johnson RD, Nielsen CL. Traumatic Amputation of Finger From an Alligator Snapping Turtle Bite. Wilderness Environ Med. 2016; 27(2):277–281. https://doi.org/10.1016/j.wem.2016.02.003

Gottdenker NL, Jacobson ER. Effect of venipuncture sites on hematologic and clinical biochemical values in desert tortoises (Gopherus agassizii). Am J Vet Res. 1995; 56(1):19–21.

Eatwell K, Hedley J, Barron R. Reptile haematology and biochemistry. In Pract. 2014; 36(1):34–42. https://doi.org/10.1136/inp.f7488

López-Olvera JR, Montané J, Marco I, Martínez-Silvestre A, Soler J, Lavin S. Effect of venipuncture site on hematologic and serum biochemical parameters in marginated tortoise (Testudo marginata). J Wildl Dis. 2003; 39(4):830–836. https://doi.org/10.7589/0090-3558-39.4.830

Medeiros N, Locatelli-dittrich R, Schmidt E, Alvares A, Patrício L, Lange RR, et al. Efeito do sítio de venopunção nos parâmetros hematológicos em tigre-d’água-americano, Trachemys scripta elegans. Pesqui Vet Bras. 2012; 32(1):37–40. http://pvb.org.br/portal/download_artigo/MTA1MHwyMDIxMDMwNDE5NTk1NA==

Perpiñán D, Armstrong DL, Dórea F. Effect of Anticoagulant and Venipuncture Site on Hematology and Serum Chemistries of the Spiny Softshell Turtle (Apalone spinifera). J Herpetol Med Surg. 2011; 20(2–3):74–78. https://doi.org/10.5818/1529-9651-20.2.74

Lyman RA. The anti-haemolytic function of calcium in the blood of the snapping turtle, Chelydra serpentina. J Cell Comp Physiol. 1945; 25(1):65–73. https://doi.org/10.1002/jcp.1030250108

Gradela A, Souza VN, Queiroz MM de, Constantino A da C, Bandeira CGC, Faria MD de, et al. Biometria corporal e parâmetros hematológicos de Trachemys scripta elegans e Trachemys dorbignyi (Testudines: Emydidae) criadas em cativeiro em Petrolina, Pernambuco. Pesqui Vet Bras. 2017; 37(1):83–90. https://doi.org/10.1590/s0100-736x2017000100014

Kakizoe Y, Sakaoka K, Kakizoe F, Yoshii M, Nakamura H, Kanou Y, et al. Successive changes of hematologic characteristics and plasma chemistry values of juvenile loggerhead turtles (Caretta caretta). J Zoo Wildl Med. 2007; 38(1):77–84. https://doi.org/10.1638/05-096.1

Rohilla MS, Tiwari PK. Simple method of blood sampling from Indian freshwater turtles for genetic studies. Acta Herpetológica. 2008; 3(1):65–69. https://doi.org/10.13128/Acta_Herpetol-2485

Zaias J, Norton T, Fickel A, Spratt J, Altman NH, Cray C. Biochemical and hematologic values for 18 clinically healthy radiated tortoises (Geochelone radiata) on St Catherines Island, Georgia. Vet Clin Pathol. 2006; 35(3):321–325. https://doi.org/10.1111/j.1939-165X.2006.tb00139.x

García GC, Alves‐Júnior JRF, Santana ÁE, Stas CMF, Silva CC, Kanayama CY, et al. Hematologic variables of the Arrau turtle (Podocnemis expansa) under the effects of different anticoagulants and cytologic stains. Vet Clin Pathol. 2021; 50(2):209–215. https://doi.org/10.1111/vcp.12960

Citado por