Ir al menú de navegación principal Ir al contenido principal Ir al pie de página del sitio

Consideraciones para la obtención de sangre en tortugas: sitios de venopunción y anticoagulantes

Considerations for extracting blood from turtles and tortoises: venipuncture sites and anticoagulants



Cómo citar
Rodríguez-Almonacid, C. C., Vargas-León, C. M., Moreno-Torres, C. A., & Matta Camacho, N. E. (2022). Consideraciones para la obtención de sangre en tortugas: sitios de venopunción y anticoagulantes. Revista MVZ Córdoba, 27(2), e2256. https://doi.org/10.21897/rmvz.2256

Dimensions
PlumX
Licencia
Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Cristian Camilo Rodríguez-Almonacid
Carolina Maria Vargas-León
Carlos Alfonso Moreno-Torres
Nubia Estela Matta Camacho

Cristian Camilo Rodríguez-Almonacid,

Cristian C. Rodríguez-Almonacid

Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Biología, Grupo de Estudio Relación Parásito-Hospedero. 111321 Bogotá, Colombia


Objetivo. Evaluar diferentes puntos de venopunción y el uso de dos anticoagulantes para la obtención de muestras sanguíneas en tortugas. Materiales y métodos. Se muestrearon 82 individuos de las especies Trachemys callirostris, Podocnemis unifilis y Chelonoidis carbonaria. Los puntos de venopunción evaluados fueron: seno venoso subcaparacial, vena coccígea dorsal y vena yugular; y se compararon dos anticoagulantes: heparina de sodio y EDTA. Resultados. A partir de la vena yugular se obtuvieron muestras sanguíneas sin hemodilución y en un volumen suficiente para realizar análisis hematológicos. Por el contrario, a partir de los otros sitios de venopunción se obtuvieron mayoritariamente muestras hemodiluidas. Las muestras de sangre obtenidas a partir de C. carbonaria se hemolizaron tras su almacenamiento en EDTA (40 µl/ml de sangre), lo que no se evidenció al utilizar heparina de sodio (100 UI/ml de sangre) como anticoagulante. Conclusiones. La vena yugular es el sitio de venopunción más recomendable para la extracción de muestras sanguíneas con fines clínicos. La heparina de sodio fue el anticoagulante de elección para almacenar dichas muestras al no inducir hemólisis en estas.


Visitas del artículo 1391 | Visitas PDF


Descargas

Los datos de descarga todavía no están disponibles.
  1. Moreno LA, Andrade GI, Ruíz-Contreras LF. Biodiversidad 2016. Estado y tendencias de la biodiversidad continental de Colombia. Bogotá, Colombia: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt; 2016. http://repository.humboldt.org.co//handle/20.500.11761/32962
  2. Gibbons JW, Scott DE, Ryan TJ, Buhlmann KA, Tuberville T, Metts BS, et al. The Global Decline of Reptiles, Déjà Vu Amphibians. Bioscience. 2000; 50(8):653–66. https://doi.org/10.1641/0006-3568(2000)050[0653:TGDORD]2.0.CO;2
  3. Hofmeyr MD, Henen BT, Walton S. Season, sex and age variation in the haematology and body condition of geometric tortoises Psammobates geometricus. African Zool. 2017; 52(1):21–30. https://doi.org/10.1080/15627020.2017.1284575
  4. Arcila VH. Hematología y química sérica en hembras quelonios (Trachemys scripta callirostris) en la ribera del río Lebrija, Puerto Wilches (Santander) Parte I. Spei Domus. 2005; 1(2). https://revistas.ucc.edu.co/index.php/sp/article/view/568
  5. Carrascal J, Negrete H, Rojano C, Álvarez G, Chacón J, Linares J. Caracterización hematológica de hicoteas (Trachemys callirostris Gray, 1856) en Córdoba, Colombia. Rev Med Vet. 2014; 28:43. https://doi.org/10.19052/mv.3180
  6. Oliveira-Júnior AA, Tavares-Dias M, Marcon JL. Biochemical and hematological reference ranges for Amazon freshwater turtle, Podocnemis expansa (Reptilia: Pelomedusidae), with morphologic assessment of blood cells. Res Vet Sci. 2009; 86(1):146–151. https://doi.org/10.1016/j.rvsc.2008.05.015
  7. Rossini M, Blanco PA, Marín E, Comerma-Steffensen S, Zerpa H. Haematological values of post-laying Arrau turtle (Podocnemis expansa) in the Orinoco River, Venezuela. Res Vet Sci. 2012; 92(1):128–131. https://doi.org/10.1016/j.rvsc.2010.10.026
  8. Rojas G, Varillas L. Hemograma de la Tortuga Taricaya (Podocnemis unifilis). Hosp Vet. 2013; 5(1):13–15. http://www.rhv.cl/index.php?option=com_docman&task=doc_download&gid=67&Itemid=
  9. Ferronato BO, Genoy-puerto A, Piña CI, Souza FL, Verdade LM, Matushima ER. Notes on the hematology of free-living Phrynops geoffroanus (Testudines: Chelidae) in polluted rivers of Southeastern Brazil. Zool. 2009; 26(4):795–798. https://doi.org/10.1590/S1984-46702009000400027
  10. Muñoz-Pérez JP, Lewbart GA, Hirschfeld M, Alarcón-Ruales D, Denkinger J, Castañeda JG, et al. Blood gases, biochemistry and haematology of Galápagos hawksbill turtles (Eretmochelys imbricata). Conserv Physiol. 2017; 5(1). https://doi.org/10.1093/conphys/cox028
  11. Lewbart GA, Griffioen JA, Savo A, Muñoz-Pérez JP, Ortega C, Loyola A, et al. Biochemistry and hematology parameters of the San Cristóbal Galápagos tortoise (Chelonoidis chathamensis). Conserv Physiol. 2018; 6(1). https://doi.org/10.1093/conphys/coy004
  12. Cabrera M, Li O, Gálvez H, Sánchez N, Rojas G. Valores hematológicos de la tortuga motelo (Geochelone denticulata) mantenida en cautiverio. Rev Investig Vet del Peru. 2011; 22(2):144–150. https://doi.org/10.15381/rivep.v22i2.287
  13. Naguib M. How to take blood from a tortoise. Companion Anim. 2016; 21(7):422–425. https://doi.org/10.12968/coan.2016.21.7.422
  14. Crawshaw GJ, Holz P. Comparison of Plasma Biochemical Values in Blood and Blood-Lymph Mixtures from Red-eared Sliders, Trachemys scripta elegans. Bull Assoc Reptil Amphib Vet. 1996; 6(2):7–9. https://doi.org/10.5818/1076-3139.6.2.7
  15. Muro J, Cuenca R, Pastor J, Vinas L, Lavin S. Effects of Lithium Heparin and Tripotassium EDTA on Hematologic Values of Hermann’s Tortoises (Testudo hermanni). J Zoo Wildl Med. 1998; 29(1):40–44. https://www.jstor.org/stable/20095714
  16. Perpiñán D. Chelonian haematology: 1. Collection and handling of samples. In Pract. 2017; 39(5):194–202. https://doi.org/10.1136/inp.j1692
  17. Innis C, Knotek Z. Tortoises and Freshwater Turtles. En: Heatley J, Russell K, editors. Exotic Animal Laboratory Diagnosis. 1° ed. Hoboken, USA: Wiley; 2020. https://doi.org/10.1002/9781119108610.ch16
  18. Redrobe S, MacDonald J. Sample Collection and Clinical Pathology of Reptiles. Vet Clin North Am Exot Anim Pract. 1999; 2(3):709–730. https://doi.org/10.1016/S1094-9194(17)30118-4
  19. Mans C. Venipuncture techniques in chelonian species. Lab Anim. 2008; 37(7):303–304. https://doi.org/10.1038/laban0708-303
  20. Hattingh J, Smith EM. Anticoagulants for avian and reptilian blood: Heparin and EDTA. Pflügers Arch Eur J Physiol. 1976; 363(3):267–269. https://doi.org/10.1007/BF00594613
  21. Natt MP, Herrick CA. A New Blood Diluent for Counting the Erythrocytes and Leucocytes of the Chicken. Poult Sci. 1952; 31(4):735–738. https://doi.org/10.3382/ps.0310735
  22. Johnson RD, Nielsen CL. Traumatic Amputation of Finger From an Alligator Snapping Turtle Bite. Wilderness Environ Med. 2016; 27(2):277–281. https://doi.org/10.1016/j.wem.2016.02.003
  23. Gottdenker NL, Jacobson ER. Effect of venipuncture sites on hematologic and clinical biochemical values in desert tortoises (Gopherus agassizii). Am J Vet Res. 1995; 56(1):19–21.
  24. Eatwell K, Hedley J, Barron R. Reptile haematology and biochemistry. In Pract. 2014; 36(1):34–42. https://doi.org/10.1136/inp.f7488
  25. López-Olvera JR, Montané J, Marco I, Martínez-Silvestre A, Soler J, Lavin S. Effect of venipuncture site on hematologic and serum biochemical parameters in marginated tortoise (Testudo marginata). J Wildl Dis. 2003; 39(4):830–836. https://doi.org/10.7589/0090-3558-39.4.830
  26. Medeiros N, Locatelli-dittrich R, Schmidt E, Alvares A, Patrício L, Lange RR, et al. Efeito do sítio de venopunção nos parâmetros hematológicos em tigre-d’água-americano, Trachemys scripta elegans. Pesqui Vet Bras. 2012; 32(1):37–40. http://pvb.org.br/portal/download_artigo/MTA1MHwyMDIxMDMwNDE5NTk1NA==
  27. Perpiñán D, Armstrong DL, Dórea F. Effect of Anticoagulant and Venipuncture Site on Hematology and Serum Chemistries of the Spiny Softshell Turtle (Apalone spinifera). J Herpetol Med Surg. 2011; 20(2–3):74–78. https://doi.org/10.5818/1529-9651-20.2.74
  28. Lyman RA. The anti-haemolytic function of calcium in the blood of the snapping turtle, Chelydra serpentina. J Cell Comp Physiol. 1945; 25(1):65–73. https://doi.org/10.1002/jcp.1030250108
  29. Gradela A, Souza VN, Queiroz MM de, Constantino A da C, Bandeira CGC, Faria MD de, et al. Biometria corporal e parâmetros hematológicos de Trachemys scripta elegans e Trachemys dorbignyi (Testudines: Emydidae) criadas em cativeiro em Petrolina, Pernambuco. Pesqui Vet Bras. 2017; 37(1):83–90. https://doi.org/10.1590/s0100-736x2017000100014
  30. Kakizoe Y, Sakaoka K, Kakizoe F, Yoshii M, Nakamura H, Kanou Y, et al. Successive changes of hematologic characteristics and plasma chemistry values of juvenile loggerhead turtles (Caretta caretta). J Zoo Wildl Med. 2007; 38(1):77–84. https://doi.org/10.1638/05-096.1
  31. Rohilla MS, Tiwari PK. Simple method of blood sampling from Indian freshwater turtles for genetic studies. Acta Herpetológica. 2008; 3(1):65–69. https://doi.org/10.13128/Acta_Herpetol-2485
  32. Zaias J, Norton T, Fickel A, Spratt J, Altman NH, Cray C. Biochemical and hematologic values for 18 clinically healthy radiated tortoises (Geochelone radiata) on St Catherines Island, Georgia. Vet Clin Pathol. 2006; 35(3):321–325. https://doi.org/10.1111/j.1939-165X.2006.tb00139.x
  33. García GC, Alves‐Júnior JRF, Santana ÁE, Stas CMF, Silva CC, Kanayama CY, et al. Hematologic variables of the Arrau turtle (Podocnemis expansa) under the effects of different anticoagulants and cytologic stains. Vet Clin Pathol. 2021; 50(2):209–215. https://doi.org/10.1111/vcp.12960

Sistema OJS 3.4.0.3 - Metabiblioteca |