Aplicaciones de las nanopartículas metálicas en las ciencias veterinarias
Applications of metal nanoparticles in veterinary sciences
Mostrar biografía de los autores
Las nanopartículas son materiales que se encuentran a una escala nanométrica menor a 100 nm, se originan de forma natural o por la intervención del hombre y de acuerdo con los elementos que las constituyen adquieren funciones únicas y específicas. En las ciencias veterinarias las nanopartículas metálicas son consideradas una herramienta revolucionaria e innovadora, que permiten entrar a una nueva era en la transformación de los vehículos de medicamentos y vacunas, en el diagnóstico y tratamiento de enfermedades infecciosas y degenerativas, además de mejorar los aspectos zootécnicos de crianza y reproducción de los animales e innovar las herramientas en la vigilancia de la inocuidad de los alimentos de origen animal. En esta revisión se analizaron estudios enfocados en las aplicaciones de las nanopartículas metálicas en las ciencias veterinarias, lo cual brinda un panorama actual de los alcances y limitaciones en el uso de estas herramientas nanotecnológicas en las diferentes áreas del conocimiento veterinario.
Visitas del artículo 1360 | Visitas PDF
Descargas
- Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007; 2(4):MR17–MR71. https://doi.org/10.1116/1.2815690
- Appasani K. BioNanoMedicine: A nanotechnology platform for the 21st century. Expert Rev Mol Diagn 2005; 5(6):839–840. https://doi.org/10.1586/14737159.5.6.839
- Vazquez-Muñoz R, Huerta-Saquero A. Nanomateriales con actividad microbicida: una alternativa al uso de antibióticos. Mundo Nano 2014; 7(13):37–47. https://doi.org/10.22201/ceiich.24485691e.2014.13.48707
- Mohanraj VJ, Chen Y. Nanoparticles – A Review. Trop J Pharm Res 2006; 5(1):561–573. https://doi.org/10.4314/tjpr.v5i1.14634
- Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. Antimicrobial effects of silver nanoparticles. Nanomedicine 2007; 3(1):95–101. https://doi.org/10.1016/j.nano.2006.12.001
- Roduner E. Size matters : why nanomaterials are different. Chem Soc Rev 2006; 35(7)583–592. https://doi.org/10.1039/B502142C
- Frejo M, Díaz M, Lobo M, García J, Capó M. Nanotoxicología ambiental: retos actuales. Med Balear 2011; 26(2):36–46. http://ibdigital.uib.es/greenstone/collect/medicinaBalear/index/assoc/Medicina/_Balear_/2011v26n/2p036.dir/Medicina_Balear_2011v26n2p036.pdf
- Zhang XF, Liu ZG., Shen W, Gurunathan S. Silver Nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 2016; 17(9):1534. https://doi.org/10.3390/ijms17091534
- Dakal TC, Kumar A, Majumar, RS, Yadav V. Mechanism basis of antimicrobial action of silver nanoparticles. Front Microbiol 2016; 7:1831. https://doi.org/10.3389/fchem.2020.00341
- Bai DP, Lin XY, Huang YF, Zhang XF. Theranostics aspects of various nanoparticles in Veterinary Medicine. Int J Mol Sci 2018; 19(11):3299. https://doi.org/10.3390/ijms19113299
- Elemike EE, Onwudiwe, Ekennia AC, Sonde CU, Ehiri RC. Green synthesis of Ag/Ag2O nanoparticles using aqueous leaf extract of Eupatorium odoratum and its antimicrobial and mosquito larvicidal activies. Molecules 2017; 22(5):674. https://doi.org/10.3390/molecules22050674
- Hamdy ME, Del Carlo M, Hussein HA, Salah TA, El-Deeb AH, et al. “Development of gold nanoparticles biosensor for ultrasensitive diagnosis of foot and mouth disease virus. J Nanobiotechnology 2018; 16(1):48. https://doi.org/10.1186/s12951-018-0374-x
- Wernicki A, Puchalski A, Urban-Chmiel R, Dec M, Stęgierska D, Dudzic A, et al. Antimicrobial properties of gold, silver, copper and platinum nanoparticles against selected microorganisms isolated from cases of mastitis in cattle. Med Weter 2014; 70(9):564–567. http://www.medycynawet.edu.pl/images/stories/pdf/pdf2014/092014/201409564567.pdf
- Kojouri GA, Jahanabadi S, Shakibaie M, Ahadi AM, Shahverdi AR. Effect of selenium supplementation with sodium selenite and selenium nanoparticles on iron homeostasis and transferrin gene expression in sheep: A preliminary study. Res Vet Sci 2012; 93(1):275–278. https://doi.org/10.1016/j.rvsc.2011.07.029
- Hassan AA, Oraby NH, El-Dahshan EME, Ali M. Antimicrobial potential of iron oxide nanoparticles in control of some causes of microbial skin affection in cattle. Eur J Acad Essays 2015; 2(6):20–31. https://www.semanticscholar.org/paper/Antimicrobial-Potential-of-Iron-Oxide-Nanoparticles-Atef Oraby/3a22cb5c68f2ac0f2a732eda03d657ca01bfe8be
- Velayutham K, Rahuman AA, Rajakumar G, Santhoshkumar T, Marimathu S, Javaseelan C, et al. “Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis. Parasitol Res 2012; 111(6):2329–2337. https://doi.org/10.1007/s00436-011-2676-x
- Noori A, Karimi F, Fatahian S, Yazdani F. Effects of zinc oxide nanoparticles on renal function in mice. Int J Biosci 2014; 5(9):140–146. http://doi.org/10.12692/ijb/5.9.140-146
- Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci 2010; 2(4):282–289. https://doi.org/10.4103/0975-7406.72127
- Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 2004; 275(1):177–182. https://doi.org/10.1016/j.jcis.2004.02.012
- Banumathi B, Malaikozhundan B, Vaseeharan B. In vitro acaricidal activity of ethnoveterinary plants and green synthesis of zinc oxide nanoparticles against Rhipicephalus (Boophilus) microplus. Vet Parasitol 2016; 30(216):93–100. https://doi.org/10.1016/j.vetpar.2015.12.003
- Bogdanchikova N, Vázquez-Muñoz R, Huerta-Saquero A. Silver nanoparticles composition for treatment of distemper in dogs. Int J Nanotecnology 2016; 13(1–3):225–235. https://tpu.pure.elsevier.com/en/publications/silver-nanoparticles-composition-for-treatment-of-distemper-in-do
- Wójcik M, Lewandowwski W, Król M, Pawlowski K, Mieczkowski J, Lechowski R, et al. Enhancing anti-tumor efficacy of doxorubicin by non-covalent conjugation to gold nanoparticles-In vitro studies on feline fibrosarcoma cell lines. PLoSOne 2015; 10(4):e0129639. https://doi.org/10.1371/journal.pone.0124955
- Wong KKY, Cheung SO, Huang L, Niu J, Tao C, Ho CM, et al. Further evidence of the anti-inflammatory effects of silver nanoparticles. Chem Med Chem 2009; 4(7):1129–1135. https://doi.org/10.1002/cmdc.200900049
- Yaqoob AA, Ahmad H, Parveen T, Ahmad A, Oves M, Ismail IMI, etal. Recent advances in metal decorated nanomaterials and their various biological applications: A review. Front Chem 2020; 8(341):1-23. https://doi.org/10.3389/fchem.2020.00341
- Kuswandi B, Futra D, Heng LY. Chapter 15-Nanosensors for the detection of contaminants. In: Nanotechnology Application in Food; FLavor Stability, Nutrion and Safety 2017. https://doi.org/10.1016/B978-0-12-811942-6.00015-7
- Tomar RS, Preet S. Evaluation of anthelmintic activity of biologically synthesized silver nanoparticles against the gastrointestinal nematode, Haemonchus contortus. J Helminthol. 2016;91(4):454–461. https://doi.org/10.1017/S0022149X16000444
- Saleh M, Kumar G, Abdel-Baki AA, Al-quraishy S, El-matbouli M. In vitro antimicrosporidial activity of gold nanoparticles against Heterosporis saurida. BMC Vet Res 2016;12(44):1–6. https://doi.org/10.1186/s12917-016-0668-x
- Pimentel-Acosta CA, Morales-Serna FN, Chávez-Sánchez Mc, Lara HH, Pestryakov A, Bogfanchikova N, et al. Efficacy of silver nanoparticles against the adults and eggs of monogenean parasites of fish. Parasitol Res 2019; 118(6):1741–1749. https://doi.org/10.1007/s00436-019-06315-9
- Saleh M, Abdel-Baki AA, Dkhil MA. El-Matbouli M, Al-Quraishy S. Antiprotozoal effects of metal nanoparticles against Ichthyophthirius ultifiliis. Parasitology 2017; 44(13):1802–1810. https://doi.org/10.1017/S0031182017001184
- Miraballes C, Riet-Correa F. A review of the history of research and control of Rhicephalus (Boophilus) microplus, babebiosis and anaplasmosis in Uruguay. Exp Appl Acarol. 2018; 75(4):383-398 https://doi.org/10.1007/s10493-018-0278-3
- Benelli G. Mode of action nanoparticles against insects. Environ Sci Pollut Res. 2018; 25(13):12329-12341. https://doi.org/10.1007/s11356-018-1850-4
- Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, et al. Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res. 2011; 108(6):1541–1549. https://doi.org/10.1007/s00436-010-2212-4
- Banumathi B, Vaseeharan B, Malaikozhundan B, Ramasamy P, Govindarajan M. Alharbi NS, et al., Green larvacides aganist blowflies, Lucilia sericata (Diptera Calliphoridae): Screening of seven plants used in Indian ethno-veterinary medicine and production of green-coated zinc oxide nanoparticles. Physiol Mol Plant Pathol. 2018; 101:214–218. https://doi.org/10.1016/j.pmpp.2017.02.003
- Marimuthu S, Rahuman AA, Santhoshkumar T, Jayaseelan C, Kirhi AV Bagavan A, et al. Lousicidal activity of synthesized silver nanoparticles using Lawsonia inermis leaf aqueous extract against Pediculus humanus capitis and Bovicola ovis. Parasitol Res. 2012; 111(5):2023–2033. https://doi.org/10.1007/s00436-011-2667-y
- El-Diasty EM, Ahmed MA, Okasha N, Mansour S, El-Dek SI, El-Khalek HMABD Youssif MH. Antifungal activity of zinc oxide nanoparticles against dermatophytic lesions of cattle. Rom J Biophys. 2013; 23(3):191–202. https://doi.org/10.5897/AJB11.1499
- Yuan Y, Peng Q, Gurunathan S. Effects of Silver nanoparticles on multiple drug-resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from mastitis-infected goats: An alternative approach for antimicrobial therapy. Int J Mol Sci. 2017; 18(3):2–22. https://doi.org/10.3390/ijms18030569
- Gurunathan S, Choi. YJ, Kim JH. Antibacterial efficacy of silver nanoparticles endometritis caused by Prevotella melaninogenica and Arcanobacterum pyogenes in dairy cattle. Int J Mol Sci 2018; 19(4):1210. https://doi.org/10.3390/ijms19041210
- Mohamed MM, Fouad SA Elshoky HA, Mohammed GM, Salaheldin TA. Antibacterial effect of gold nanoparticles against Corynebacterium pseudotuberculosis. Int J Vet Sci Med. 2017; 5(1):23–29. https://doi.org/10.1016/j.ijvsm.2017.02.003
- Ortiz-Arana G. Evaluación del efecto bactericida in vitro de las nanopartículas de plata en cepas de Moraxella spp multirresistentes aisladas en ovinos en el Estado de México [Tesis de maestría]. Toluca, México: Universidad Autónoma del Estado de México; 2019. http://hdl.handle.net/20.500.11799/105338
- Bansod SD, Bawaskar MS, Gade AK., Rai MK. Development of shampoo, soap and ointment formulated by green synthesised silver nanoparticles functionalised with antimicrobial plants oils in veterinary dermatology: Treatment and prevention strategies. IET Nanobiotechnology 2015; 9(4):165–171. http://doi.org/10.1049/iet-nbt.2014.0042
- Flores-González M, Talavera-Rojas M, Soriano-Vargas E, Rodríguez-González V. Practical mediated-assembly synthesis of silver nanowires using commercial: Camellia sinensis extracts and their antibacterial properties. New J Chem 2019;42(3):2133-2139. https://doi.org/10.1039/C7NJ03812G
- Soltani M, Ghodratnema M, Ahari H, Mousavi EH, Atee M, Dastmalchi F, Rahmanya J, et al. The inhibitory effect of silver nanoparticles on the bacterial fish pathogens, Streptococcus iniae, Lactococcus garvieae, Yersinia ruckeri and Aeromonas hydrophila. Int J Vet Res. 2009; 3(2):137–142. https://pdfs.semanticscholar.org/8c29/f52e713f347c4630f59b134b62fdc0f56d0.pdf
- Shaalan MI, El-Mahdy MM, Theiner S, El-Matbouli M, Saleh M. In vitro assessment of the antimicrobial activity of silver and zinc oxide nanoparticles against fish pathogens. Acta Vet Scand. 2017; 59(1):1–11. https://doi.org/10.1186/s13028-017-0317-9
- Rafiei S, Rezatofighi SE, Ardakani MR, Madadgar O. In vitro anti-foot-and-mouth disease virus activity of magnesium oxide nanoparticles. IET Nanobiotechnol. 2015; 9(5):247–251. http://dx.doi.org/10.1049/iet-nbt.2014.0028
- Wójcik M, Lewandowski W, Król M, Pawlowski K, Mieczkowski J, Lechowski R, et al. Correction: Enhancing anti-tumor efficacy of doxorubicin by non-covalent conjugation to gold nanoparticles- In vitro studies on feline fibrosarcoma cell lines. PLoS One 2015; 10(6):e0129639. https://doi.org/10.1371/journal.pone.0129639
- Zabielska-Koczywąs K, Wojtalewicz A,Uzarowska E, Klejman A, Wojtkowska A, et al. Distribution of glutathione-stabilized gold nanoparticles in feline fibrosarcomas and their role as a drug delivery system for doxorubicin—preclinical studies in a murine model. Int J Mol Sci. 2018; 19(4):1–19. https://doi.org/10.3390/ijms19041021
- Sincai M, Ganga D, Ganga M, Argherie D, Bica D. Antitumor effect of magnetite nanoparticles in cat mammary adenocarcinoma. J Magn Magn Mater. 2005; 293(1):438–441. https://doi.org/10.1016/j.jmmm.2005.02.074
- Gurunathan S, Han JW, Park JH, Kim E, Choi YJ, Kwon DN, et al. Reduced graphene oxide-silver nanoparticle nanocomposite: a potential anticáncer nanotherapy. Int J Nanomedicine 2015; 10(6):6257-6276. https://doi.org/10.2147/IJN.S92449
- Scott NR. Nanotechnology and animal health. Rev Sci Tech. 2005; 24(1):425–432. http://doi.org/10.20506/rst.24.1.1579
- Kuswandi B, Futra D, Heng LY. Chapter 15-Nanosensors for the detection of contaminants. In: Nanotechnology Application in Food; FLavor Stability, Nutrion and Safety. 2017:307-333. https://doi.org/10.1016/B978-0-12-811942-6.00015-7
- Pineda L, Chwalibog A, Sawosz E, Lauridsen C, Engberg R, Elnif J, et al. Effect of silver nanoparticles on growth performance, metabolism and microbial profile of broiler chickens. Arch Anim Nutr. 2012; 66(5):416–429. https://doi.org/10.1080/1745039X.2012.710081
- Bhanja SK, Hotowt A, Mehra M, Sawosz E, Pineda L, Vadalasetty KP, et al. In ovo administracion of silver nanoparticles and/or amino acids influence metabolism and immune gene expresion in chicken embryos. Int J Mol Sci. 2015; 16(5):9484-9503. https://doi.org/10.3390/ijms16059484
- Romero-Pérez A, García-García E, Zavaleta-Mancera A, Ramírez-Bribiesca J, Revilla-Vázquez A, Hernández-Calva, et al. Designing and evaluation of sodium selenite nanoparticles in vitro to improve selenium absorption in ruminants. Vet Res Commun. 2010; 34(1):71–79. https://doi.org/10.1007/s11259-009-9335-z
- Tayel AA, El-Tras WF, Moussa S, El-Baz AF, Mahrous H, Salem MF, et al., Antibacterial action of zinc oxide nanoparticles against foodborne pathogens. J Food Saf. 2010; 31(2):211–218. https://doi.org/10.1111/j.1745-4565.2010.00287.x
- Ashraf AAET, Ahmed MA, Diasty EM, Fatma IEH, Ahmed Youssef MM. A comparative study on antifungal activity of FE2O3, and FE3O4 nanoparticles. Int J Adv Res. 2018; 6(1):189-194. http://doi.org/10.21474/IJAR01/6204
- Hassan AR, de la Escosura- Muñiz A, Merkoçi A, Highly sensitive and rapid determination of Escherichia coli 0157:H7 in minced beef and wáter using electrocatalytic gold nanoparticle tags. Biosens Biolectron 2015; 67:511-515. https://doi.org/10.1016/j.bios.2014.09.019
- Giovannozzi AM, Rolle F, Sega M, Abete MC, Marchis D, Rossi AM. Rapid and sensitive detection of melamine in milk with gold nanoparticles by Surface Enhanced Raman Scattering. Food Chem. 2014; 159:250–256. https://doi.org/10.1016/j.foodchem.2014.03.013
- Kim HJ, Kim SH, Lee JK, Choi CU, Lee HS, Kang HG, et al. A novel mycotoxin purification system using magnetic nanoparticles for the recovery of aflatoxin B1 and zearalenone from feed. J Vet Sci. 2012; 13(4):363–369. http://doi.org/10.4142/jvs.2012.13.4.363
- Cao Y, Ma Y, Zhang M, Wang H, Tu X, Shen H, et al. Ultrasmall graphene oxide supported gold nanoparticles as adjuvants improve humoral and cellular immunity in mice. Adv Funct Mater. 2014; 24(44):6963-6971. https://doi.org/10.1002/adfm.201401358
- Asgary V, Shoari A, Baghbani-Arani F, Sadat Shandiz SA, Khosravy MS, Janani A, et al. Green synthesis and evaluation of silver nanoparticles as adjuvant in rabies veterinary vaccine. Int J Nanomedicine 2016; 11:3597–3605. https://doi.org/10.2147/IJN.S109098
- Staroverov SA, Volkov AA, Larionov SV, Mezhennyy PV, Kozlov S, Fomin AS, et al. Study of transmissible-gastroenteritis-virus-antigen-conjugated immnunogenic properties of selenium nanoparticles and gold. Life Sci J 2014; 11(11):456–460. http://www.lifesciencesite.com/lsj/life1111/078_25876life111114_456_460.pdf
- Ning P, Wu Z, Li X, Zhou Y, Hu A, Gong X, et al. Development of functionalized gold nanoparticles as nanoflare probes for rapid detection of classical swine fever virus. Colloids Surfaces B Biointerfaces. 2018; 1(171):110–114. https://doi.org/10.1016/j.colsurfb.2018.07.024
- Stringer RC, Schommer S, Hoehn D, Grant SA. Development of an optical biosensor using gold nanoparticles and quantum dots for the detection of Porcine Reproductive and Respiratory Syndrome Virus. Sens Actuator B-Chem. 2008; 134(2):427–431. https://doi.org/10.1016/j.snb.2008.05.018
- Sattarahmady N, Tondro GH., Gholchin M, Heli H. Gold nanoparticles biosensor of Brucella spp. genomic DNA: Visual and spectrophotometric detections. Biochem Eng J. 2015;97(15):1-7. https://doi.org/10.1016/j.bej.2015.01.010
- Saleh M, Soliman H, Haenen O, El-Matbouli M. Antibody-coated gold nanoparticles immunoassay for direct detection of Aeromonas salmonicida in fish tissues. J Fish Dis. 2011;34(11):845–852. https://doi.org/10.1111/j.1365-2761.2011.01302.x