Skip to main navigation menu Skip to main content Skip to site footer

Effect of glucose concentration on sperm motility activation in bocachico Prochilodus magdalenae (Pisces, Characiformes)

Efectos de la concentración de glucosa sobre la activación de la movilidad espermática en bocachico Prochilodus magdalenae (Pisces, Characiformes)



Open | Download

How to Cite
Martínez, G., Atencio G, V., & Pardo C, S. (2011). Effect of glucose concentration on sperm motility activation in bocachico Prochilodus magdalenae (Pisces, Characiformes). Journal MVZ Cordoba, 16(2), 2554-2563. https://doi.org/10.21897/rmvz.1020

Dimensions
PlumX
Gregorio Martínez
Víctor Atencio G
Sandra Pardo C

Objective. To determine the concentration of non-activating glucose on sperm motility as a component of future extender for cryopreservation of Prochilodus magdalenae semen. Materials and methods. Inactive semen obtained by hormonal induction from 3 males was analyzed. From each male, 0.25 μL of semen was deposited on Makler’s chamber, and then a fixed amount of 75 μl of glucose solution was added to each drop given a final concentration of, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10%. Each male was checked 3 times (n=3). Osmolarity was determined in each seminal sample (~250-300 mOsm/Kg) and into each solution, (0, 62, 124, 186, 250, 310, 360, 410, 472, 536 y 620 mOsm/kg, respectively. The software Sperm Class Analyzer (SCA) was used to determine the curvilinear (VCL μm/sec) and straight (VSL, μm/sec) velocity (VSL, μm/sec), likewise, the rate of sperm motility (rapid, medium, and slow) was determined. Rate of immotile sperm was also determined. The activation time of motility (seconds) was obtained under light-field microscope. Results. Glucose Concentrations of 0 and 5% caused activation of sperm motility. Sperm activation was not visually detected in samples with glucose concentrations of 6% or higher. However, the SCA detected a total sperm motility of 7.2%, a VCL of 5.1 μm/sec and a VSL of 1.7 μm/sec. The SCA detected 100% non motile sperm in samples with 7% glucose solution and the motility was not subsequently acquired when distilled water was added. Conclusions. Glucose concentration has a determining effect on viability and activation of fresh sperm. Concentration of 6% glucose solution can be use as a non-activating solution for sperm motility in extenders for sperm cryopreservation in this specie.

Article visits 1284 | PDF visits


Downloads

Download data is not yet available.
  1. Mojica I. Lista preliminar de las especies de peces dulceacuícolas de Colombia. Rev Acad Col Cienc Exac Fís y Nat 1999; 23:547-566.
  2. INPA: Instituto Nacional de Pesca y Acuicultura. Boletín estadístico pesquero colombiano de 1995 (ed. by INPA). Publicaciones INPA-MADR, Santa fe de Bogotá. 1995.
  3. Horváth A, Miskolczi E, Urbány B. Cryopreservation of common carp sperm. Aquat Living Resour 2003; 16(5):457-460. https://doi.org/10.1016/S0990-7440(03)00084-6
  4. Yang H, Hazlewood L, Walter RB, Tiersch TR. Effect of osmotic inmobilization on refrigerated storage and cryopreservation of sperm from a viviparous fish, the green swordtail Xiphosphorus helleri. Cryobiology 2006; 52(2):209-218. https://doi.org/10.1016/j.cryobiol.2005.11.002
  5. Bolsover RS, Hyams JS, Shephard EA, White HA, Wiedemann CG. Cell Biology. 2a ed. USA: John Wiley & Sons, Inc. 2004.
  6. Krasznai Z, Marian T, Izumi H, Damjanovich S, Balkay L, Tron L, Morisawa M. Membrane hyperpolarization removes inactivation of Ca2+ channels, leading to Ca2+ influx and subsequent initialization of sperm motility in the common carp. Proc Natl Acad Sci USA 2000; 97:2052-2057. https://doi.org/10.1073/pnas.040558097
  7. Viveiros ATM, Lock EJ, Woelders H, Komen J. Influence of cooling rates and plunging temperatures in an interrupted slow-freezing procedure for semen of the African catfish, Clarias gariepinus. Cryobiology 2001; 43:276-287. https://doi.org/10.1006/cryo.2001.2362
  8. Pegg D. Principles of cryopreservation. En: Day JG, Stacy GN, editors. Cryopreservation and Freeze-Drying Protocols. Totowa NJ: Human Press Inc; 2007. https://doi.org/10.1007/978-1-59745-362-2_3
  9. Jiang Z, Li Q, Li W, Hu J, Zhao H, Zhang S. Effect of low density lipoprotein on DNA integrity of freezing–thawing boar sperm by neutral comet assay. Anim Reprod Sci 2007; 99:401-407. https://doi.org/10.1016/j.anireprosci.2006.08.022
  10. Tabares CJ, Tarazona A, Olivera A. Fisiología de la activación del espermatozoide en peces de agua dulce. Rev Col Cienc Pec 2005; 18: 149-161.
  11. Linhart O, Cosson J, Mims SD, Shelton WI, Rodina M. Effects of ions on the motility of fresh and demembranated paddlefish (Polyodon spathula) spermatozoa. Reproduction 2002; 124:713-719. https://doi.org/10.1530/rep.0.1240713
  12. Alavi SMH, Cosson J. Sperm motility in fishes: (II) Effects of ions and osmotic pressure. Cell Biol Int 2006; 30:1–14. https://doi.org/10.1016/j.cellbi.2005.06.004
  13. Ciereszko A, Glogowski J, Dabrowski K. Biochemical characteristics of seminal plasma and spermatozoa of freshwater fishes. En: Tiersch TR and Mazik PM, editores. Cryopreservation in Aquaculture Species. Baton Roue, Louisiana: World Aquaculture Society; 2000.
  14. Inaba K. Molecular architecture of sperm flagella: molecules for motility and signaling. Zool Sci 2003; 20:1043-1056. https://doi.org/10.2108/zsj.20.1043
  15. Ingermann RL. Energy metabolism and respiration in fish spermatozoa. En: Alavi SMH, Cosson JJ, Coward K y Raffie C, editors. Fish spermatology. Oxford, UK: Alpha Science International Ltda.; 2008.
  16. Shimoda E, de Andrade DR, Vásquez- Vidal M, Shigueky-Yasui G, Straggiotti- Sliva JF, Pereira-Godinho H, Souza G. Efeitos da osmolaridade sobre a motilidade espermática na Piabanha Brycon insignis. Revista Ceres 2007; 54 (315):430-433.
  17. Ortiz-Mu-oz V, Álvarez-León R. Caracterización de la tolerancia ambiental de las comunidades ícticas en subsidiarios de los ríos Cauca y Magdalena, Colombia. Memoria de la Fundación La Salle de Ciencias Naturales. 2008; 68:7-20.
  18. Cosson J. The ionic and osmotic factors controlling motility of fish spermatozoa. Aquaculture 2004; 12:69–85. https://doi.org/10.1023/B:AQUI.0000017189.44263.bc
  19. Martins GB, Piedras SRN, Pouey JLOF, Robaldo RB. Qualidade espermática de jundiá sob salinidades reduzidas. XVIII Congreso de iniciación científica, XI Encuentro de pos-graduacao y I Mostra científica. Brazil: Universidade Federal de Pelotas; 2009. URL Disponible en: http://www.ufpel. tche.br/cic/2009/cd/biologicas.html . 2563
  20. Alavi SMH, Rodina H, Policar T, Linhart O. Relationship between semen characteristics and body size in Barbus barbus L. (Teleostei: Cyprinidae) and effects of ions and osmolality on sperm motility. Comp Biochem Physiol A Mol Integr Physiol 2009a; 153:430–437. https://doi.org/10.1016/j.cbpa.2009.04.001
  21. Alavi SMH, Rodina M, Policar T, Kozak P, Psenicka M, Linhart O. Semen of Perca fluviatilis L: sperm volume and density, seminal plasma indices and effects of dilution ratio, ions and osmolality on sperm motility. Theriogenology 2007; 68:276–283. https://doi.org/10.1016/j.theriogenology.2007.05.045
  22. Alavi SMH, Rodina M, Viveiros ATM, Cosson J, Gela D, Boryshpolets S, Linhart O. Effects of osmolality on sperm morphology, motility and flagellar wave parameters in Northern pike (Esox lucius L.). Theriogenology 2009b; 72:32–43. https://doi.org/10.1016/j.theriogenology.2009.01.015
  23. Legendre M, Cosson J, Alavi SMH, Linhart O. Sperm motility activation in the euryhaline tilapia Sarotherodon melanotheron heudelotii (Dumeril, 1859) acclimatized to fresh, sea or hypersaline waters. Cybium 2008; 32(2):181–182.
  24. Hu J, Zhang Y, Zhou R, Zhang Y. Changes in extracellular osmolality initiate sperm motility in freshwater teleost rosy barb Puntius conchonius. Theriogenology 1995; 72:704–710. https://doi.org/10.1016/j.theriogenology.2009.05.009
  25. Thorogood J, Blackshaw A. Factors affecting the activation, motility and cryopreservation of the spermatozoa of the yellowfin bream, Acanthopagrus australis (Günter). Aquacult Res 2008; 23:377–344.

Sistema OJS 3.4.0.3 - Metabiblioteca |