Skip to main navigation menu Skip to main content Skip to site footer

In vitro digestibility of specific dsRNA by enzymes of digestive tract of shrimp Litopenaeus vannamei

Digestibilidad in vitro del dsRNA específico por enzimas del tracto digestivo del camarón Litopenaeus vannamei



Open | Download

How to Cite
Álvarez-Sánchez, A. R., Nolasco-Soria, H., & Mejía-Ruíz, H. (2017). In vitro digestibility of specific dsRNA by enzymes of digestive tract of shrimp Litopenaeus vannamei. Journal MVZ Cordoba, 22(2), 5867-5880. https://doi.org/10.21897/rmvz.1024

Dimensions
PlumX
Ana R Álvarez-Sánchez
Héctor Nolasco-Soria
Humberto Mejía-Ruíz

Objective. The digestibility of specific dsRNA by action of the enzymes of digestive tract of the whiteleg shrimp Litopenaeus vannamei was determined in vitro. Materials and methods. Digestive enzyme activity (amylase, lipase, protease, DNase and RNase) was measured in the stomach, digestive gland, and anterior, middle, and posterior intestine of juvenile shrimp, and the digestibility of DNA, RNA and the dsRNA-ORF89, specific to WSSV, was determined by in vitro assays, as well as electrophoretic and densitometric analyses. Results. The highest enzymatic activity was found in the digestive gland: amylase (81.41%), lipase (92.60%), protease (78.20%), DNase (90.85%), and RNase (93.14%). The highest digestive capacity against DNA, RNA, and dsRNA was found in the digestive gland (5.11 ng of DNA per minute, 8.55 ng of RNA per minute, and 1.48 ng dsRNA per minute). Conclusions. The highest digestibility of dsRNA-ORF89, specific to WSSV, was found in the digestive gland, whereas the lowest digestibility was observed in the posterior intestine. This is the first report regarding the digestibility of dsRNA-ORF89 by whiteleg shrimp digestive tract enzymes, with potential therapeutic importance in shrimp culture to prevent WSSV disease through balanced feed.


Article visits 1329 | PDF visits


Downloads

Download data is not yet available.
  1. Taju G, Madan N, Abdul-Majeed S, Raj-Kumar T, Thamizhvanan S, Otta S, Sahul-Hameed AS. Immune responses of whiteleg shrimp, Litopenaeus vannamei (Boone, 1931), to bacterially expressed dsRNA specific to VP28 gene of white spot syndrome virus. J Fish Dis 2015; 38(5):451-465.
  2. https://doi.org/10.1111/jfd.12256
  3. Sudhakaran RT, Mekata T, Kono M, Inada S, Okugawa M, Yoshimine T et al. Double-stranded RNA-mediated silencing of the White Spot Syndrome Virus VP28 gene in Kuruma shrimp, Marsupenaeus japonicus. Aquac Res 2011; 42(8):1153–1162.
  4. https://doi.org/10.1111/j.1365-2109.2010.02703.x
  5. Robalino J, Bartlett T, Shepard EF, Prior S, Jaramillo G, Scura E, et al. Double-stranded RNA induces sequence-specific antiviral silencing in addition to non-specific immunity in marine shrimp: convergence of RNA interference and innate immunity in the invertebrate antiviral response? J Virology 2005; 79(21):13561–13571.
  6. https://doi.org/10.1128/JVI.79.21.13561-13571.2005
  7. Kim CS, Kosuke Z, Nam YK, Kim SK, Kim KH. Protection of shrimp (Penaeus chinensis) against white spot syndrome virus (WSSV) challenge by double-stranded RNA. Fish Shellfish Immunol 2007; 23(1):242–246.
  8. https://doi.org/10.1016/j.fsi.2006.10.012
  9. Xu J, Han F, Zhang X. Silencing shrimp white spot syndrome virus (WSSV) genes by siRNA. Antiviral Res 2007; 73(2):126–131.
  10. https://doi.org/10.1016/j.antiviral.2006.08.007
  11. Escobedo-Bonilla CM, Vega S, Mejia H. Efficacy of double-stranded RNA against whites pot syndrome virus (WSSV) non-structural (orf89, wsv191) and structural (vp28, vp26) genes in the Pacific white shrimp. J ksus 2015; 27(2):182–188.
  12. Sarathi M, Simon MC, Venkatesan C, Thomas J, Ravi M, Madan N, et al. Efficacy of bacterially expressed dsRNA specific to different structural genes of White Spot Syndrome Virus (WSSV) in protection of shrimp from WSSV infection. J Fish Dis 2010; 33(7):603–607.
  13. https://doi.org/10.1111/j.1365-2761.2010.01157.x
  14. LaFauce K, Owens L. RNA interference with special reference to combating viruses of crustacean. Indian J Virol 2012; 23(2):226-243.
  15. https://doi.org/10.1007/s13337-012-0084-1
  16. Papić L, García K, Romero J. Avances y limitaciones en el uso de los dsRNA como estrategias de control y prevención de enfermedades virales en sistemas acuícolas. Lat Am J Aquat Res2015; 43(3):388-401.
  17. Agrawal N, Dasaradhi PV, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK. RNA interference: biology, mechanism, and applications. Microbiol. Mol Biol Rev 2003; 67(4):657–685.
  18. https://doi.org/10.1128/MMBR.67.4.657-685.2003
  19. Posiri P, Ongvarrasopone C, Panyim S. A simple one-step method for producing dsRNA from E. coli to inhibit shrimp virus replication. J Virol Meth 2013; 188(2):64-69.
  20. https://doi.org/10.1016/j.jviromet.2012.11.033
  21. Plant KP, LaPatra SE. Advances in fish vaccine delivery. Dev Comp Immunol 2011; 35(12):1256-1262.
  22. https://doi.org/10.1016/j.dci.2011.03.007
  23. Linggatong GR, Hernandez EP, Talactac MR, Maeda H, Kusakisako K, Umemiya R, Fujisaki K, Tanaka T. Induction of gene silencing in Haemaphysalis longicornis ticks through immersion in double-stranded RNA. Ticks Tick Borne Dis 2016; 7(5):813–816.
  24. https://doi.org/10.1016/j.ttbdis.2016.03.018
  25. Sarathi M, Simon MC, Ahmed I, Kumar SR, Sahul-Hameed AS. Silencing vp28 gene of white spot syndrome virus of shrimp by bacterially expressed dsRNA. Mar Biotechnol 2008a; 10(2):198–206.
  26. https://doi.org/10.1007/s10126-007-9052-y
  27. Sarathi M, Simon MC, Venkatesan C, Sahul-Hameed AS. Oral administration of bacterially expressed vp28 dsRNA to protect Penaeus monodon from white spot syndrome virus. Mar Biotechnol 2008b; 10(3):242–249.
  28. https://doi.org/10.1007/s10126-007-9057-6
  29. Somchai P, Jitrakorn S, Thitamadee S, Meetam M, Saksmerprome V. Use of microalgae Chlamydomonas reinhardtii for production of double-stranded RNA against shrimp virus. Aquacult Rep 2016; 3(3):178-183.
  30. https://doi.org/10.1016/j.aqrep.2016.03.003
  31. Alexandre D, Ozório R, Derner R, Fracalossi D, Oliveira G, Richard I, Walter R, Silva CP. Spatial distribution of digestive proteinases in the midgut of the Pacific white shrimp (Litopenaeus vannamei) indicates the existence of endo-ectoperitrophic circulation in Crustacea. Comp Biochem Physiol B 2014; 173(10):90–95.
  32. https://doi.org/10.1016/j.cbpb.2014.04.010
  33. Magalhães T, Mossolin CE, Mantelatto FL. Gonadosomatic and Hepatosomatic indexes of the freshwater shrimp Macrobrachium olfersii (Decapoda, Palaemonidae) from São Sebastião Island, Southeastern Brazil. Pan-Am J Aquat Sci 2012; 7(1):1-9.
  34. Vega-Villasante F, Nolasco H, Civera R. The digestive enzymes of the Pacific brown shrimp Penaeus californiensis. I- Properties of amylase activity in the digestive tract. Comp Biochem Physiol B 1993; 106(6):547-550.
  35. https://doi.org/10.1016/0305-0491(93)90130-W
  36. Versaw WK, Cuppert SL, Winter DD, Williams LE. An improved colorimetric assay for bacterial lipase in non-fat dry milk. J Food Sci 1989; 54(6):1557-1558.
  37. https://doi.org/10.1111/j.1365-2621.1989.tb05159.x
  38. Michal G, Schomburg D, editores. Biochemical pathways: an atlas of biochemistry and molecular biology. 2nd ed. New Jersey: John Wiley & Sons; 2012.
  39. Hoffman CS, Winston F. A ten- minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 1987; 57(3):267-272.
  40. https://doi.org/10.1016/0378-1119(87)90131-4
  41. Rodríguez-Jaramillo C, Hurtado MA, Romero-Vivas E, Ramírez JL, Manzano M, Palacios E. Gonadal development and histochemistry of the tropical oyster, Crassostrea corteziensis (Hertlein, 1951) during an annual reproductive cycle. J Shellfish Res 2008; 27(5):1129–1141.
  42. https://doi.org/10.2983/0730-8000-27.5.1129
  43. Castex M, Chim L, Pham D, Lemaire P, Wabete N, Nicolas JL, Schmidely P, Mariojouls C. Probiotic P. acidilactici application in shrimp Litopenaeus stylirostris culture subject to vibriosis in New Caledonia. Aquaculture 2008; 275(4):182–193.
  44. https://doi.org/10.1016/j.aquaculture.2008.01.011
  45. Hernández JC, Murueta JH. Activity of trypsin from Litopenaeus vannamei. Aquaculture 2009; 290(4):190–195.
  46. https://doi.org/10.1016/j.aquaculture.2009.02.034
  47. Becerra MJ, Martínez PM, Martínez LR, Rivas ME, López JA, Porchas MA. Production response and digestive enzymatic activity of the Pacific white shrimp Litopenaeus vannamei (Boone 1931) intensively pregrown in microbial heterotrophic and autotrophic-based systems. ScientificWorldJournal 2012; 2012(3):1-6.
  48. https://doi.org/10.1100/2012/723654
  49. Cruz–Suárez LE, Ricque-Marie D, Tapia-Salazar M, Olvera-Novoa MA, Civera-Cerecedo R. (Eds.). Avances en Nutrición Acuícola V. Mérida, Yucatán, México; 2000.
  50. Sheng LC, We IZ, De SL, Cong HY. Profile of progesterone and estradiol in hepatopancreas, ovary, and hemolymph of shrimp Penaeus chinensis during reproduction cycle. J Fish China 2012; 25(4):304-310.
  51. Molthathong S, Senapin S, Klinbunga S, Puanglarp N, Rojtinnakorn J, Flegel TW. Down-regulation of defender against apoptotic death (DAD1) after yellow head virus (YHV) challenge in black tiger shrimp Penaeus monodon. Fish Shellfish Immunol 2008; 24(2):173-179.
  52. https://doi.org/10.1016/j.fsi.2007.10.013
  53. Shim MS, Kwon YJ. Efficient and targeted delivery of siRNA in vivo. FEBS J 2010; 277(23):48144827.
  54. https://doi.org/10.1111/j.1742-4658.2010.07904.x
  55. Lamontagne B, Larose S, Boulanger J, Elela S. The RNase III family: A conserved structure and expanding functions in eukaryotic dsRNA metabolism. Curr Issues Mol Biol 2001; 3(4):71-78.
  56. Lemos D, Ezquerra JM, Garcia FL. Protein digestion in penaeid shrimp: digestive proteinases, proteinase inhibitors and feed digestibility. Aquaculture 2000; 186(2):89-105.
  57. https://doi.org/10.1016/S0044-8486(99)00371-3
  58. Ongvarrasopone C,Chomchai E, Panyim S. Antiviral effect of PmRab7 knock-down on inhibition of Laem-Singh virus replication in black tiger shrimp. Antiviral Res 2010; 88(1):116-8.
  59. https://doi.org/10.1016/j.antiviral.2010.06.013
  60. Varela A, Pe-a N. El Virus del Síndrome de las Manchas Blancas (WSSV): una revisión y su impacto en la camaronicultura costarricense. Rev Costa Rica Cienc Vet 2010; 28(2):51-69.
  61. Sellars MJ, Rao M, Arnold SJ, Wade N, Cowley J. Penaeus monodon is protected against gill-associated virus by muscle injection but not oral delivery of bacterially expressed dsRNAs. Dis. Aquat 2011; 95(1):19-30.
  62. https://doi.org/10.3354/dao02343
  63. Treerattrakool S, Chartthai C, Phromma-in N, Panyim S, Udomkit A. Silencing of gonad-inhibiting hormone gene expression in Penaeus monodon by feeding with GIH dsRNA enriched Artemia. Aquaculture 2013; 404(1):116–121.
  64. https://doi.org/10.1016/j.aquaculture.2013.04.024

Sistema OJS 3.4.0.3 - Metabiblioteca |