Skip to main navigation menu Skip to main content Skip to site footer

Obtaining, characterization and evaluation of two candidate preparations for probiotics developed with agroindustrial waste

Obtención, caracterización y evaluación de dos preparados candidatos a probióticos desarrollados con residuos agroindustriales



How to Cite
Miranda-Yuquilema, J. E., Marin-Cárdenas, A., Sánchez-Macías, D., & García-Hernández, Y. (2018). Obtaining, characterization and evaluation of two candidate preparations for probiotics developed with agroindustrial waste. Journal MVZ Cordoba, 23(1), 6487-6499. https://doi.org/10.21897/rmvz.1243

Dimensions
PlumX
José E. Miranda-Yuquilema
Alfredo Marin-Cárdenas
Davinia Sánchez-Macías
Yaneisy García-Hernández

Objective. Obtain, characterize and evaluate two bio-prepares developed from the sugar cane molasses - orange vinasse fermented with yeast and/or lactic acid bacteria. Materials and methods. A completely randomized design was used, with five repeats per treatment. The evaluated treatments were: T1, Lactobacillus acidophilus, Lactobacillus bulgaricus, Streptococcus thermophilus y T2, the previous bacteria plus Saccharomyces cerevisiae and Kluyveromyces fragilis (L-4 UCLV). The previous mentioned microorganisms were inoculated in a substratum compounded by molasses - vinasse and these were incubated at 37°C for 24 hours. To the bioprepares, physiochemical, microbiological and in vitro tests was made to evaluate the probiotic capacity. Results. Both bioprepares presented a dark brown color, sweet and a pH lesser than 4. The bromatological and microbiologic development were higher (p>0.05) in T2. Both bioprepares the viability was higher than 92%. in vitro tests two bioprepares were resistant to an acid pH, bile salts, broad spectrum of microbial activity and inhibitory effect to E. coli, Salmonella spp. and S. aureus. Conclusion. The bioprepares obtained from sugar cane molasses - orange vinasse fermented with yeast and lactic acid bacteria manifested physiochemical and microbiologic properties appropriated to probiotic products. In in vitro tests, their potential was demonstrated as a probiotic.


Article visits 2484 | PDF visits


Downloads

Download data is not yet available.
  1. Giang H, Viet T, Ogle B, Lindberg J. Effects of different probiotic complexes of lactic acid bacteria on growth performance and gut environment of weaned piglets. Livest Sci 2010; 133(1):182–184. https://doi.org/10.1016/j.livsci.2010.06.059
  2. Lyberg K, Lundh T, Pedersen C, Lindberg J. Influence of soaking, fermentation and phytase supplementation on nutrient digestibility in pigs offered a grower diet based on wheat and barley. Anim Sci 2006; 82(06):853–858. https://doi.org/10.1017/ASC2006109
  3. Corr S, Li Y, Riedel C, O'Toole P, Hill C, Gahan G. Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci USA 2007; 104(18):7617–7621. https://doi.org/10.1073/pnas.0700440104
  4. Begum M, Li HL, Hossain MM, Kim IH. Dietary bromelain-C.3.4.22.32 supplementation improves performance and gut health in sows and piglets. Livest Sci 2015; 180:177–182. https://doi.org/10.1016/j.livsci.2015.07.013
  5. Yadav S. Bajagai, Athol V. Klieve, Peter J. Dart, Wayne L. Bryden. Probiotics in animal nutrition – Production, impact and regulation. Editor Harinder P.S. Makkar. Paper No. 179. FAO, Animal Production and Health: Rome; 2016.
  6. De MAN JC, ROGOSA M, SHARPE ME. A medium for the cultivation of lactobacilli. J Appl Microbiol 1960; 23(1):130–135 https://doi.org/10.1111/j.1365-2672.1960.tb00188.x
  7. Miranda-Yuquilema J.E. Evaluación del efecto probiótico en dos biopreparados obtenidos a partir de cultivo mixto de bacterias lácticas y levaduras. [Tesis M.Sc]. Universidad Central "Marta Abreu" de Las Villas: Santa Clara, Cuba; 2016.
  8. Dadvar P, Dayani O, Mehdipour M, Morovat M. Determination of physical characteristics, chemical composition and digestion coefficients of treated lemon pulp with Saccharomyces cerevisiae in goat diet. J Anim Physiol Anim Nutr 2015; 99(1):107–113. https://doi.org/10.1111/jpn.12204
  9. AOAC. International Headquarters 2275 Research Blvd, Rockville: Maryland, USA; 2014.
  10. Ortiz A, Reuto J, Fajardo F, Sarmiento S, Aguirre A, Arbeláez G, Gómez D. Evaluación de la capacidad probiótica "in vitro" de una cepa nativa de Saccharomyces cerevisiae. Univ Sci. 2008; 13(2):138-148.
  11. Rodríguez-González M. Aislamiento y selección de cepas del género Lactobacillus con capacidad probiótica e inmunomoduladora. [Tesis Ph.D. en Ciencias]. Universitat Autònoma de Barcelona: Barcelona, Espa-a; 2009.
  12. Heather K, Uri Y, Torey L, Meggan B, Thomas A. Treatment, promotion, commotion: antibiotic alternatives in food-producing animals. Curr Trends Microbiol 2013; 21(3):114-119. https://doi.org/10.1016/j.tim.2012.11.001
  13. Rezzillo C, Codo R, Sánchez D, Pinto D, Marzani B, Filannino P, et al Lactic acid fermentation as a tool to enhance the functional features of Echinacea spp. Microb Cell Fact 2013; 12:44. https://doi.org/10.1186/1475-2859-12-44
  14. Sourav B, and Arijit D. Study of and Cultural Parameters on the Bacteriocins Produced by Lactic Acid Bacteria Isolated from Traditional Indian Fermented Foods. Am J Food Techno 2010; 5(2):111-120. https://doi.org/10.3923/ajft.2010.111.120
  15. Duncan DB. Multiple range and multiple F test. Biometric 1955; 11(1):1-42. https://doi.org/10.2307/3001478
  16. Marin-Cárdenas A. Desarrollo de la tecnología de producción del BIOPRANAL. [Tesis Ph.D en Ciencias]. Universidad Central de Las Villas: Villa Clara, Cuba; 2008.
  17. Jurado Gámez H, Ramírez C, Martínez J. Evaluación in vivo de Lactobacillus plantarum como alternativa al uso de antibióticos en lechones. Rev MVZ Córdoba. 2013; 18:3648-3657. https://doi.org/10.21897/rmvz.131
  18. Sánchez L, Omura M, Lucas A, Perez T, Llanez M, Ferreira C. Cepas de Lactobacillus spp. con capacidades probióticas aisladas del tracto intestinal de terneros neonatos. Rev Salud Animal 2015; 37(2):94-104.
  19. Iyer R, Tomar S, Umamaheswari T, Singh R. Streptococcus thermophilus: a multifunctional lactic acid bacterium. Int Dairy J 2010; 20(3):133–141. https://doi.org/10.1016/j.idairyj.2009.10.005
  20. Le Blanc J.G., Sybesma, W., Starrenburg, M., Sesma, F., de Vos, W.M., de Giori, S. et al, Supplementation with engineered Lactococcus lactis improves the folate status in deficient rats. Nut 2010; 26(7):835–841. https://doi.org/10.1016/j.nut.2009.06.023
  21. Nazef L, Belguesmia Y, Tani A, Prévost H, Drider D.Identification of lactic acid bacteria from poultry feces: evidence on anti-Campylobacter and anti-Listeria activities. Poult Sci 2008; 87(2):329-334. https://doi.org/10.3382/ps.2007-00282
  22. Patil A K, Kumar S, Verma A K, Baghel P S. Probiotics as Feed Additives in Weaned Pigs. Livest Res Int 2015; 3(2):31-39.
  23. Jacela Y, De Rouchey J, Tokach M, Goodband R, Nelssen J, Renter D, Dritz S. Feed additives for swine: Fact sheets – prebiotics and probiotics, and phytogenics. J Swine Health Prod 2010; 18(3):132-136. https://doi.org/10.4148/2378-5977.7067
  24. Pajarillo E, Chae J, Balolong M, Kim H, Kang D. Assessment of fecal bacterial diversity among healthy piglets during the weaning transition. J Gen Appl Microbiol 2014; 60(4):140‒146. https://doi.org/10.2323/jgam.60.140
  25. Pérez M, Laurencio M, Rondón A, Milian G, Bocourt R, Arteaga F. Actividad antimicrobiana de una mezcla probiótica de exclusión competitiva y su estabilidad en el tiempo. Rev Salud Animal 2011; 33(3):147-153.
  26. Khalil R, El Bahloul Y, Djadouni F, Omar S. Isolation and partial characterization of a bacteriocin produced by a newly isolated Bacillus megateriun 19 strain. PJN 2009; 8(3):242-250. https://doi.org/10.3923/pjn.2009.242.250
  27. Klayraung S, Viernstein H, Sirithunyalug J, Okonogi S. Probiotic properties of lactobacilli isolated from thai traditional food. Sci. Pharm 2008; 76(3):485–503. https://doi.org/10.3797/scipharm.0806-11

Sistema OJS 3.4.0.3 - Metabiblioteca |