Skip to main navigation menu Skip to main content Skip to site footer

Endophytes bacterial growth promoters isolated to colosoana grass, Department of Sucre, Colombia

Bacterias endófitas promotoras de crecimiento aisladas de pasto colosoana, departamento de Sucre, Colombia



How to Cite
Pérez-Cordero, A., Chamorro-Anaya, L., & Doncel-Mestra, A. (2018). Endophytes bacterial growth promoters isolated to colosoana grass, Department of Sucre, Colombia. Journal MVZ Cordoba, 23(2), 6696-6709. https://doi.org/10.21897/rmvz.1347

Dimensions
PlumX
Alexander Pérez-Cordero
Leonardo Chamorro-Anaya
Arturo Doncel-Mestra

Objective. Evaluate in vitro the efficiency of endophytic growth promoting bacteria isolated from different colosuana grass tissues in the municipality of Corozal, department of Sucre, Colombia. Materials and methods. Endophytic bacteria were isolated, population density was determined in CFU / g of tissue, then quantitative and qualitative tests of FBN activities, phosphate solubilization, siderophore production and AIA were carried out to finally identify by sequencing the bacteria that had positive growth promotion activity. Results. The largest populations were found in roots (5.0 X 1010 3.8 X 1010 2.8 X 1010 2.4 X 1010 and 1.5 X1010 CFU / g of tissue, for the location of the Peñas, the Mamon, Canta gallo, Chapinero and Hato Nuevo, respectively) with respect to stem and leaf. A total of 53 isolated endophytes bacteria, 18 showed reducing capacity of N2 to ammonium; 15 morphotypes showed phosphate solubilizing capacity; 8 of indole acetic acid production and 12 of siderophore producers. Conclusions. This work isolated endophytes bacteria with the ability to promote plant growth. Two species of endophytic bacteria were identified as Delftia tsuruhatensis and Pseudomonas hibiscicola (S. maltophilia), which showed excellent solubilization results of phosphates, reduced N2 to ammonium, production of indol acetic acid and the production of siderophores.

 


Article visits 1689 | PDF visits


Downloads

Download data is not yet available.
  1. Pérez CR., Vertel MM., Pérez CA. 2015. Effect of different types of fertilizers on soil fungi in the agroecosystem Bothriochloa pertusa (L) A. Camus, in the Sabanas sucre-as, Colombia. Livestock. 27(1) http://www.lrrd.org/lrrd27/1/pere27004.html.
  2. Gomez C, Mercado J, Payares F, Perez A. Identification of nematodes associated with the grass colosuana (Bothriochloa pertusa (L) A. Camus) in the municipality of Sampués department of Sucre, Colombia. Rev Colombiana Cienc Anim 2010; 2(2):325-330. https://doi.org/10.24188/recia.v2.n2.2010.311
  3. Cardona E, Rios L, Pe-a J. Availability of Grasses and Forages as Potential Lignocellulosic Materials for Bioethanol Production in Colombia. Technological Information 2012; 23(6):87-96.
  4. Peters M, Franco T, Schmidt A, Hincapie B. Species forrajeras multiintention: Options for producers of the American Tropic. International Center of Tropical Agriculture (CIAT). 2011. URL disponible en: http://ciat-library.ciat.cgiar.org:8080/jspui/bitstream/123456789/7035/1/Especies_Forrajeras_Multiproposito_2011.pdf
  5. Pérez A, Rojas J, Fuentes J. Endophytes Bacteria diversity of associated with roots of colosuana (Bothriochloa pertusa) Pasture in three locations of the department Sucre, Colombia. Acta Biol Colomb. 2010; 15(2):219-228
  6. Lara, C., Avila E.L, Pe-ata, N. Native phosphate solubilizing bacteria to increase the crops in the department of Cordova-Colombia. Rev Bio Agro. 2011; 9(2):114-120.
  7. Zinniel K, Lambrecht P, Harris B., Feng Z, Kuczmarski D, Higley P, Vidaver A. Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. J Appl Environ Microbiol 2002; 68(5):2198-2208. https://doi.org/10.1128/AEM.68.5.2198-2208.2002
  8. Pérez A, Tuberquia A, Amell D. In vitro activity of nitrogen fixating and phosphate solubilizing bacteria. Agron Mesoam. 2014; 25(2):267-276.
  9. Barraza Z, Pérez A. Endophytes bacteria promoters of growth associated with varieties of rice of the Colombian Caribe. [Thesis masters in Biotechnology]. University of Córdoba: Montería, Córdoba; 2015.
  10. Rodriguez H, Fraga R, Gonzalez T, Bashan Y. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant and Soil 2006; 287(1-2):15-21. https://doi.org/10.1007/s11104-006-9056-9
  11. Lara C, Sanes S, Oviedo L. Impact of native phosphate solubilizing bacteria on the growth and development of radish (Raphanus sativus) plants. Applied Biotechnology 2013; 30(4):276-279.
  12. Dawwam G, Elbeltagy A, Emara H, Abbas I, Hassan M. Beneficial effect of plant growth promoting bacteria isolated from the roots of potato plant. Ann Agric Sci. 2013; 58(2):195-201. https://doi.org/10.1016/j.aoas.2013.07.007
  13. Doncel A, Chamorro L, Pérez A. Activity in vitro of bacteria endophytes promoters of growth associated with colosoana pasture in the municipality of Corozal, Sucre. Rev Colombiana Cienc Anim. 2016; 8(Supl):351-360. https://doi.org/10.24188/recia.v8.n0.2016.391
  14. Oliveira M, Santos T, Vale H, Delvaux J, Cordero A, Ferreira A, Moraes C. A. Endophytic microbial diversity in coffee cherries of Coffea arabica from southeastern Brazil. Can J Microbiol. 2013; 59(4):221-230. https://doi.org/10.1139/cjm-2012-0674
  15. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA 6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013; 30(12):2725-2729. https://doi.org/10.1093/molbev/mst197
  16. Axelrood PE, Chow ML, Radomski CC, Dermot JM, Davies J. Molecular characterization of bacterial diversity from British Columbia forest soils subjected to disturbance. Can J Microbiol. 2002; 48:655-674. https://doi.org/10.1139/w02-059
  17. Lara C, Villalba M, Oviedo L. Non-symbiotic bacterial diazotrophs from of agricultural crops of San Carlos. Córdoba, Colombia. Rev Colomb Biotecnol. 2007; 9(2):6-14.
  18. Anzuay MS, Frola O, Angelini JG, Ludue-a LM, Fabra A, Taurian T. Genetic diversity of phosphate-solubilizing peanut (Arachis hypogaea L.) associated bacteria and mechanisms involved in this ability. Symbiosis. 2013; 60(3):143-154. https://doi.org/10.1007/s13199-013-0250-2
  19. Lara C, Oviedo L, Aleman A. Strain native with potencial in the acetic acid production indol to improve the agriculture. Rev Bio Agro Vol. 2011; 9(1):17-23.
  20. Zheng YK, Qiao XG, Miao CP, Liu K, Chen YW, Xu LH, Zhao LX. Diversity, distribution and biotechnological potential of endophytic fungi. Ann Microbiol. 2016; 66:529-542. https://doi.org/10.1007/s13213-015-1153-7
  21. Jasim B, Jimtha CJ, Jyothis M, Radhakrishnan E. Plant growth promoting potential of endophytic bacteria isolated from Piper nigrum. Plant Growth Regulation. 2013; 71(1):1-11. https://doi.org/10.1007/s10725-013-9802-y
  22. Liu X, Dou G, Ma Y. Potential of endophytes from medicinal plants for biocontrol and plant growth promotion. J Gen Plant Pathol. 2016; 82(3):165-173. https://doi.org/10.1007/s10327-016-0648-9
  23. Singh RS, Mazumder P. Molecular characterization of endophytic bacteria capable of nitrogen fixation Isolated from Young Parkia Roxburghii Plant Of Manipur, India. IJSRES. 2015; 2(8):91-95
  24. Liu Y, Zuo S, Zou Y, Wang J, Song W. Investigation on diversity and population succession dynamics of endophytic bacteria from seeds of maize (Zea mays L., Nongda108) at different growth stages. Ann Microbiol 2013; 63(1):71-79. https://doi.org/10.1007/s13213-012-0446-3
  25. Akinsanya MA, Goh JK, Lim SP, Ting AS. Diversity, antimicrobial and antioxidant activities of culturable bacterial endophytes communities in Aloe vera. FEMS Microbiol Lett. 2015; 362(23):1-8. https://doi.org/10.1093/femsle/fnv184
  26. Rojas D, Zetter E, Contreras Miguel, Rocha M, Macías L, Santoyo G. Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71 endophytes produce antifungal volatile organic compounds and exhibit additive plant growth-promoting effects. Biocatal Agric Biotechnol. 2018; 13:46–52. https://doi.org/10.1016/j.bcab.2017.11.007
  27. Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W. Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol. 2008; 55(3):415-424. https://doi.org/10.1007/s00248-007-9287-1
  28. Han J, Sun L, Dong X, Cai Z, Sun X, Yang H, Song W. Characterization of a novel plant growth-promoting bacteria strain Delftia tsuruhatensis HR4 both as a diazotroph and a potential biocontrol agent against various plant pathogens. Syst Appl Microbiol. 2005; 28(1):66-76. https://doi.org/10.1016/j.syapm.2004.09.003
  29. Ringelberg D, Foley K, Reynolds CM. Bacterial endophyte communities of two wheatgrass varieties following propagation in different growing media. Can J Microbiol. 2012; 58(1):67-80. https://doi.org/10.1139/w11-122
  30. Wurdig L, Pereira L, Menezes F, Triplett W, Oliveira F. Diversity of diazotrophic endophytic bacteria associated with maize plants. Rev Bras Ciênc Solo. 2007; 31:1367-1380.

Sistema OJS 3.4.0.3 - Metabiblioteca |