Skip to main navigation menu Skip to main content Skip to site footer

Acetylcholinesterase activity and total antioxidant levels in dogs with mammary tumors before and after surgical removal

Actividad de acetilcolinesterasa y niveles totales de antioxidantes en perros con tumores de mama antes y después de la extirpación quirúrgica



How to Cite
Faria, J. L., Rossi, R. I., Da Silva, A. S., Bottari, N. B., Olsson, D., Dalberto, J. L., Mendes, R. E., Sueiro, F. A., Pereira, W. A., Mueller, E. N., Shetinger, M. R., Guarda, N., Moresco, R. N., Baldissera, M. D., & Machado, G. (2018). Acetylcholinesterase activity and total antioxidant levels in dogs with mammary tumors before and after surgical removal. Journal MVZ Cordoba, 23(3), 6799-6812. https://doi.org/10.21897/rmvz.1369

Dimensions
PlumX
Joice LM Faria
Raissa I Rossi
Aleksandro S Da Silva
Nathieli B Bottari
Débora Olsson
Jéssica L Dalberto
Ricardo E Mendes
Felipe AR Sueiro
Wanderson AB Pereira
Eduardo N Mueller
Maria RC Shetinger
Naiara Guarda
Rafael N Moresco
Matheus D Baldissera
Gustavo Machado

Objective. The aim of this study was to evaluate AChE activity in total blood and the FRAP levels in samples from dogs with mammary tumors before and after surgery, as well as the relationship between these variables with immunohistochemical markers of tumor (E-caderina, ki-67, COX-2). Materials and methods. In this study, 13 dogs with mammary tumors were divided into two groups (A and B). The group A was formed by dogs with tumors smaller than 3 cm of diameter, and the group B was formed by dogs with tumor of 3 cm of diameter or larger. The AChE activity and FRAP levels were evaluated before and after surgery and the immunohistochemistry were performed at the tumors. Results. The AChE activity was significantly increased (p<0.05) in dogs with mammary cancer compared to control animals, and neither surgery or tumor size affected the AChE activity (p>0.05). FRAP levels before surgery were significantly lower (p<0.05) compared to control animals. Also, FRAP levels increased significantly after surgery in animals of the group A compared to data before surgery, a fact not observed in dogs from the group B. E-cadherin showed low significant positive correlation with FRAP levels (r=0.37, P-value=0.05); COX-2 showed a moderate significant positive correlation to FRAP (r=0.55, P-value<0.05); and COX-2 showed a low significant positive correlation to AChE (r=0.32, P-value=0.01). Conclusions. AChE and antioxidant levels are modified in dogs with mammary cancer. These variables are involved in various physiological functions, and thus, they might be related to disease pathogenesis.


Article visits 1491 | PDF visits


Downloads

Download data is not yet available.
  1. Cassali GD, Lavalle GE, Ferreira E, Estrela-Lima A. Consensus for the Diagnosis, Prognosis and Treatment of Canine Mammary Tumors. Brazilian. J Vet Pathol 2014; 7(2): 38-69.
  2. Brunetti B, Sarli G, Preziosi R, Monari I, Benazzi C. E-Cadherin and catenin reduction influence invasion but not proliferation and survival in canine malignant mammary tumors, Vet Pathol 2005; 42(6): 781-787. https://doi.org/10.1354/vp.42-6-781
  3. Yoshida K, Yoshida S, Choisunirachon N, Saito T, Matsumoto K, Mochizuki M, Nishimura R, Sasaki N, Nakagawa T. The relationship between clinicopathological features and expression of epithelial and mesenchymal markers in spontaneous canine mammary gland tumors. J Vet Med Sci 2014; 76 (10): 1321-1324. https://doi.org/10.1292/jvms.14-0104
  4. Zuccari DAPC, Pavam MV, Terzian ACB, Pereira RS, Ruiz CM, Andrade JC. Immunohistochemical evaluation of e-cadherin, Ki-67 and PCNA in canine mammary neoplasias: Correlation of prognostic factors and clinical outcome Pesq Vet Bras 2008; 28(4): 207-215.
  5. Terzian ACB, Zuccari DAPC, Pereira RS, Pavam MV, Ruiz CM, Sueiro FAR, Coelho C. Avaliação da caspase-3 e Ki-67 como marcadores prognósticos nas neoplsias mamárias em cadelas. Braz J Vet Res An Sci 2007; 44 (2): 96-102. https://doi.org/10.11606/issn.1678-4456.bjvras.2007.26647
  6. Reis AL, Carvalheira J, Schmitt GC, Gärtner F. Immunohistochemical study of the expression of E-cadherin in canine mammary tumors. Vet Rec 2006; 152 (20): 621-624. https://doi.org/10.1136/vr.152.20.621
  7. Sarli G, Preziosi R, Benazzi C, Castellani G., Marcato PS. Prognostic value of histologic stage and proliferative activity in canine malignant mammary tumors. Journal of Veterinary Diagnostic Investigation 2007; 14 (1): 25-34. https://doi.org/10.1177/104063870201400106
  8. Méric J B, Rottey S, Olausse K, Soria J C, Khayat D, Rixe O, Spano, JP. Cyclooxygenase-2 as a target for anticancer drug development. Critic Rev Onc Hematol 2006; 59(1): 51-64. https://doi.org/10.1016/j.critrevonc.2006.01.003
  9. Stasinopoulos I, Moni N, Bhujwalla ZM. The malignant phenotype of breast cancer cells is reduced by cox-2 silencing. Neoplasia 2008; 10(11): 1163-1169. https://doi.org/10.1593/neo.08568
  10. Abou-zeid L, Baraka HN. Combating oxidative stress as a hallmark of cancer and aging: Computational modeling and synthesis of phenylene diamine analogs as potential antioxidant. Saudi Pharma J. 2014; 22(3): 264–272. https://doi.org/10.1016/j.jsps.2013.07.009
  11. Pande D, Negi R, Khanna S, Khanna R, Khanna HD. Vascular endotelial growth factor levels in relation to oxidative damage and antioxidant status in patients with breast cancer. J Breast Cancer 2010, 14(3): 181-184. https://doi.org/10.4048/jbc.2011.14.3.181
  12. Sharma M, Rajappa M, Satyman A, Sharma A (2010) Oxidant/anti-oxidant dynamics in patients with advanced cervical cancer: Mol Cel Bioch 2010; 341 (1-2): 65-72. https://doi.org/10.1007/s11010-010-0437-2
  13. Pavlov VA, Tracey KJ. The cholinergic anti-inflammatory pathway. Brain, Behavior Immunity 2005; 19 (1): 493–499. https://doi.org/10.1016/j.bbi.2005.03.015
  14. Das UN. Acetylcholinesterase and butyrylcholinesterase as markers of low-grade systemic inflammation. Annals Hepatol 2012; 11 (3): 409-411.
  15. Ruiz-Espejo F, Cabezas-Herrera J, Illana J, Campoy FJ, Vidal CJ. Cholinesterase activity and acetylcholinesterase glycosylation are altered in human breast cancer. Breast Ca Res Treat 2002; 72(1): 11-22. https://doi.org/10.1023/A:1014904701723
  16. Ye X, Zhang C, Chen Y, Zhou T. Upregulation of acetilcolinesterase mediated by p53 contributes to cisplatin-induced apoptosis in human breast cancer cell. J Cancer 2015; 6 (1): 48-53. https://doi.org/10.7150/jca.10521
  17. Worek, F, Mast U, Kiderlen D, Diepold C, Eyer P. Improved determination of acetylcholinesterase activity in human whole blood. Clin Chim Acta 1999; 288 (1): 73–90. https://doi.org/10.1016/S0009-8981(99)00144-8
  18. Benzie IFF, Strain JJ. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of ''Antioxidant Power'': The FRAP Assay. Anal Bioch 1999; 239 (1): 70–76. https://doi.org/10.1006/abio.1996.0292
  19. Martinez-Moreno P, Nieto-Céron S, Torres-Lanzas J, Ruiz-Espejo F, Tovar-Zapata I, Martínez-Hernández P, Rodríguez-López JN, Vidal CJ, Cabezas-Herrera J. Cholinesterase activity of human lung tumours varies according to their histological classification. Carcinogenesis 2006; 27(3): 429-436. https://doi.org/10.1093/carcin/bgi250
  20. Zanini D, Schmatz R, Pelinson L P, Pimentel VC, Costa P, Cardoso AM, Martins CC, Schetinger CC, Baldissareli J, Araújo MC, Oliveira L, Chiesa J, Morsch VM, Leal DBR, Schetinger MRC. Ectoenzymes and cholinesterase activity and biomarkers of oxidative stress in patients with lung cancer. Mol Cell Bioch 2013; 374(1): 137-148. https://doi.org/10.1007/s11010-012-1513-6
  21. Pohanka M. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity, Int J Mol Sci 2014; 15: 9809-9825. https://doi.org/10.3390/ijms15069809
  22. Pires I, Garcia A, Prada J, Queiroga FL. COX-1 and COX-2 expression in canine cutaneous, oral and ocular melanocytic tumours. J Comp Pathol 2010; 143 (2-3): 142-149. https://doi.org/10.1016/j.jcpa.2010.01.016
  23. Lavalle GE, Campos CB, Bertagnolli AC, Cassali GD. Canine malignant mammary gland neoplasias with advance clinical staging treated with carboplatin and ciclooxygenase inhibitors. In vivo 2012; 26(1): 375-379.
  24. Lavalle GE, Bertagnolli AC, Tavares WLF, Cassali GD. Cox-2 expression in canine mammary carcinomas: correlation with angiogenesis and overall survival. Vet Pathol 2009, 46 (6): 1275-1280. https://doi.org/10.1354/vp.08-VP-0226-C-FL
  25. Ferreira E, Gobbi H, Saraiva B S, Cassali G D. Histological and immunohistochemical identification of atypical ductal mammary hyperplasia as a preneoplastic marker in dogs. Vet Pathol 2012; 49(2): 322-329. https://doi.org/10.1177/0300985810396105
  26. Serafini M, Jakszyn P, Luja´n-Barroso L, Agudo A. Dietary total antioxidant capacity and gastric cancer risk in the European prospective investigation into cancer and nutrition study. Int J Cancer 2012; 131 (4): 544-554. https://doi.org/10.1002/ijc.27347
  27. Machado V, Da Silva AS, Schafer AS, Aires AR. Relationship between oxidative stress and pathological findings in abomasum of infected lambs by Haemonchus contortus. Pathol Res Pratic 2014; 210 (12): 812-817. https://doi.org/10.1016/j.prp.2014.09.006
  28. Evans M, Dizdaroglu D; Cooke M, Marcus S. Oxidative DNA damage: induction, repair and significance. Mut Res 2004; 567(1): 1-61. https://doi.org/10.1016/j.mrrev.2003.11.001
  29. Singh G, Maulik S K, Jaiswal A, Kumar P, Parshad R. Effect on antioxidant levels in patients of breast carcinoma during neoadjuvant chemotherapy and mastectomy. Malaysian J Med Sci 2010, 17(2): 24-28.
  30. Da Silveira, R A, Hermes C L, Almeida T C, Bochi G V, De Bona KS, Moretto MB, Moresco RN. Ischemia-modified albumin and inflammatory biomarkers in patients with prostate cancer. Clin Lab 2014; 60(10): 1703-1708. https://doi.org/10.7754/Clin.Lab.2014.131018

Sistema OJS 3.4.0.3 - Metabiblioteca |