Skip to main navigation menu Skip to main content Skip to site footer

Detection of equine herpesvirus 1 and 4 and its association with latency-associated transcripts in naturally infected horses in Colombia

Detección de los herpesvirus equinos 1 y 4 y su relación con transcriptos asociados a la latencia en caballos infectados naturalmente en Colombia



How to Cite
Vargas-Bermudez, D., Corredor F, A., Ramírez-Nieto, G., Vera A, V., & Jaime C, J. (2018). Detection of equine herpesvirus 1 and 4 and its association with latency-associated transcripts in naturally infected horses in Colombia. Journal MVZ Cordoba, 23(3), 6826-6837. https://doi.org/10.21897/rmvz.1371

Dimensions
PlumX
Diana Vargas-Bermudez
Adriana Corredor F
Gloria Ramírez-Nieto
Víctor Vera A
Jairo Jaime C

Objective. The objective of this study was to determine the presence of antibodies and viral genomes of EHV-1 and EHV-4, as well as to detect the presence of latency associated transcripts (LATs) in a selected population of Colombian horses. Materials and methods. Serum samples, submandibular lymph nodes and trigeminal ganglion were obtained from 50 horses and analyzed. Sera were evaluated for the presence of antibodies against EHV-1 and EHV-4 while tissues were initially evaluated for the presence of viral genome by nPCR. Finally, samples were used for the detection of LATs through RT-PCR. Results. In general, 6/50 samples showed antibodies to EHV-1 and 44/50 were positive for EHV-4. As for viral genome detection, 10/50 samples were positive for EHV-1 and 30/50 were positive for EHV-4; in addition, 22/35 horses positive for EHV DNA were positive for LATs. The use of these tests led to eight possible combinations of results. Conclusions. The evidence used shows that horses can have simple viral infection, co-infections with both viruses, latency due to the presence of LATs and the simultaneous presence of LATs and viral genome replication at a given time. It contributes to the understanding of the behavior of the disease in Colombia and calls attention to the importance of implementing complementary diagnoses to the serology for the control of these viruses.


Article visits 2564 | PDF visits


Downloads

Download data is not yet available.
  1. Patel JR, Heldens J. Equine Herpesvirus 1 (EHV-1) and 4 (EHV-4) epidemiology, disease and immunoprophylaxis: A brief review. Vet J 2005; 170(1):14-23. https://doi.org/10.1016/j.tvjl.2004.04.018
  2. Ma G, Azab W, Osterrieder N. Equine herpesvirus type 1 (EHV-1) and 4 (EHV-4) - Masters of co-evolution and a constant threat to equids and beyond. Vet Microbiol 2013; 167(1-2):123-134. https://doi.org/10.1016/j.vetmic.2013.06.018
  3. Telford E, Watson M, Perry J, Cullinane A, Davison A. The DNA sequence of equine Herpesvirus-4. J Gen Virol 1998; 79 (5):1197-1203. https://doi.org/10.1099/0022-1317-79-5-1197
  4. Osterrieder N, Van de Walle G. Pathogenic potential of equine alphaherpesvirus: The importance of the mononuclear cell compartment in disease outcome. Vet Microbiol 2010; 143 (1):21-28. https://doi.org/10.1016/j.vetmic.2010.02.010
  5. Goodman L, Loregian A, Perkins G, Nugent J, Buckles E, Mercorelli B et al. A point mutation in a herpesvirus polymerase determines neuropathogenicity. Plos pathogens 2007; 3(11):1583-1592. https://doi.org/10.1371/journal.ppat.0030160
  6. Borchers K, Wolfinger U, Lawrenz B, Schellenbach A, Ludwing H. Equine Herpesvirus 4 DNA in trigeminal ganglia of naturally infected horses detected by direct in situ PCR. J Gen Virol 1997; 78 (5):1109-1114. https://doi.org/10.1099/0022-1317-78-5-1109
  7. Baxi M, Efstathion S, Lawrence G, Whalley J, Slater J, Field H. The detection of latency associated transcripts of equine herpesvirus 1 in ganglionic neurons. J Gen Virol 1995; 76 (12):3113-3118. https://doi.org/10.1099/0022-1317-76-12-3113
  8. Arthur J, Scarpini C, Connor V, Lachmann R, Tolkovsky A, Efstathiou S. Herpes simplex virus type 1 promotor activity during latency establishment, maintenance, and reactivation in primary dorsal root neurons in vitro. J Virol 2001; 75 (8):3885-3895. https://doi.org/10.1128/JVI.75.8.3885-3895.2001
  9. Dunowska M, Gopakumar G, Perrot M, Kendall A, Waropastrakul S, Hartley C, et al. Virological and serological investigation of Equid herpesvirus 1 infection in New Zealand. Vet Microbiol 2015:176(3):219-228. https://doi.org/10.1016/j.vetmic.2015.01.016
  10. Borchers K, Wolfinger U, Ludwing H. Latency –associated transcripts of equine Herpesvirus type 4 in trigeminal ganglia of naturally infected horses. J Gen Virol 1999; 80 (8):2165-2171. https://doi.org/10.1099/0022-1317-80-8-2165
  11. Pusterla N, Wilson D, Madigan J, Ferraro G. Equine Herpesvirus 1 myeloencephalopathy: A review of recent developments. Vet J 2009; 180 (3):279-289. https://doi.org/10.1016/j.tvjl.2008.08.004
  12. Hartley C, Wilks C, Studdert M, Gilkerson J. Comparison of antibody detection assays for the diagnosis of equine herpesvirus 1 and 4 infections in horses. Am J Vet Res 2005; 66(5):921-928. https://doi.org/10.2460/ajvr.2005.66.921
  13. Daillo I, Hewitson G, Wright L, kellyM, Rodwell B, Corney B. Multiplex real time PCR for the detection and differentiation of equid herpesvirus 1 (EHV-1) and equid herpesvirus 4 (EHV-4). Vet Microbiol 2007; 123(1):93-103. https://doi.org/10.1016/j.vetmic.2007.02.004
  14. Pusterla N, Wilson D, Mapes S, Finno C, Isbell D, Arthur R, Ferraro G. Characterization of viral loads, strain and state of equine herpesvirus-1 using real-time PCR in horses following natural exposure at a racetrack in California. Vet J 2009; 179(2):230-239. https://doi.org/10.1016/j.tvjl.2007.09.018
  15. Lunn D, Davis N, Flaminio M, Horohov D, Osterrieder K, Pusterla N, et al. EHV-1 Consensus statement. J Vet Intern Med 2009; 23(3):450-461. https://doi.org/10.1111/j.1939-1676.2009.0304.x
  16. Allen G, Bolin D, Bryant U, Carter C, Giles R, Harrison L et al. Prevalence of latent, neuropathogenic equine herpesvirus 1 in the thoroughbred broodmare population of central Kentucky. Equine Vet J 2008; 40(2):105-110. https://doi.org/10.2746/042516408X253127
  17. Cano A, Galosi C, Ocampos G, Ramirez G, Vera V, Villamil L, Chaparro J. Equine herpesvirus 1: Characterisation of the first strain isolated in Colombia. Rev sci tech Off int Epiz 2008; 27 (3):893-897. https://doi.org/10.20506/rst.27.3.1846
  18. Ruíz J, Góez Y, López A. Equine herpesvirus 1 and 4 DNA detection in peripheral blood mononuclear cells and trigeminal ganglion of equines: Infection, latency and approximation to neuropathogenesis of the strain. Rev Colomb Cienc Pecu 2008; 21 (3):372-386.
  19. Ruíz J, Góez Y, Urcuqui S, Góngora A, López A. Serologic evidence of equine herpesvirus 1 and 4 infection in two regions of Colombia. Rev Colomb Cienc Pecu 2008; 21 (2):251-258.
  20. Borchers K, Slater J. A nested PCR for the detection and differentiation of EHV-1 and EHV-4. J Virol Methods 1993; 45: 331-336. https://doi.org/10.1016/0166-0934(93)90117-A
  21. Telford E, Watson M, McBride K, Davison A. The DNA sequence of equine herpesvirus-1. Virology 1992; 189 (1):304-316. https://doi.org/10.1016/0042-6822(92)90706-U
  22. Telford E, Watson M, Perry J, Cullinane A, Davison A. The DNA sequence of equine herpesvirus-4. J Gen Virol 1998; 79 (5):1197-1203. https://doi.org/10.1099/0022-1317-79-5-1197
  23. Rios P, Benito A, Rivera H. Rinoneumonitis Equina en caballos del valle de Lima. Rev Investig Vet Peru 2002; 13 (2):1609-9117.
  24. Ataseven V, Dagalp S, Guzel M, Basaran Z, Tan M, Geraghty B. Prevalence of equine herpesvirus 1 and equine herpesvirus 4 infections in equidae species in Turkey as determined by ELISA and multiplex nested PCR. Res Vet Sci 2009; 86(2):339-344. https://doi.org/10.1016/j.rvsc.2008.06.001
  25. Fortier G, Erk E, Fortier C, Richard E, Potier D, Pronost S, et al. Herperviruses in respiratory liquids of horses: Putative implication in airway inflammation and association with cytological features. Vet Microbiol 2009; 139 (1):34-41. https://doi.org/10.1016/j.vetmic.2009.04.021
  26. Wilsterman S, Soboll-Hussey G, Lunn D, Ashton L, Callan R, Hussey S et al. Equine herpesvirus -1 infected peripheral blood mononuclear cell subpopulations during viremia. Vet Microbiol 2011; 149 (1):40-47. https://doi.org/10.1016/j.vetmic.2010.10.004
  27. Chesters P, Allsop R, Purewal A, Edington N. Detection of latency associated transcripts of equid Herpesvirus 1 in equine leukocytes but not in trigeminal ganglia. J Virol 1997; 71 (5):3437-3443.
  28. Slater J, Borchers K, Thackray AM, Field HJ. The trigeminal ganglion is a location for equine herpesvirus 1 latency and reactivation in the horse. J Gen Virol 1994; 75 (8):2007-2016. https://doi.org/10.1099/0022-1317-75-8-2007
  29. Carlson J, Traub J, Lunn D, Morley P, Kohler A, Kasper K et al. Equine viral respiratory pathogen surveillance at horse shows and sales. J Equine Vet Sci 2013; 33 (4):229-237. https://doi.org/10.1016/j.jevs.2012.06.006
  30. Taouji S, Collobert C, Gicquel B, Saileau C, Brisseau N et al. Detection and isolation of equine herpesviruses 1 and 4 from horses in Normandy: an autopsy study of tissue distribution in relation to vaccination status. J Vet Med B Infect Dis Vet Public Health 2002; 49 (8):394-399. https://doi.org/10.1046/j.1439-0450.2002.00590.x

Sistema OJS 3.4.0.3 - Metabiblioteca |