Skip to main navigation menu Skip to main content Skip to site footer

In vitro fermentation of fibrous substrates by water buffalo ruminal cellulolytic bacteria consortia

Fermentación in vitro de consorcios bacterianos celulolíticos ruminales de búfalos de agua en sustratos fibrosos



How to Cite
Herrera-Pérez, J., Velez-Regino, L. G., Sánchez-Santillán, P., Torres-Salado, N., Rojas-García, A. R., & Maldonado-Peralta, M. (2018). In vitro fermentation of fibrous substrates by water buffalo ruminal cellulolytic bacteria consortia. Journal MVZ Cordoba, 23(3), 6860-6870. https://doi.org/10.21897/rmvz.1374

Dimensions
PlumX
Jerónimo Herrera-Pérez
Luis G Velez-Regino
Paulino Sánchez-Santillán
Nicolás Torres-Salado
Adelaido R Rojas-García
María Maldonado-Peralta

Objective. To measure the in vitro fermentation variables of a cellulolytic bacteria consortium (CBC) isolated from a water buffalo rumen in coculture with total ruminal bacteria (TRB) on two fibrous substrates. Materials and Methods. A CBC was isolated from the ruminal fluid of a female water buffalo in selective cellulolytic media. The experimental design was completely random with a 3x2 factorial arrangement; factors were treatments [TRB, CBC, and coculture (TRB + CBC)] and substrates (cobra grass and corn stover). Total gas and methane (CH4) production were measured at different time intervals. At 72 h, measurements were taken of pH, ammoniacal nitrogen (NH3-N), dry matter degradation (DMD), neutral detergent fiber degradation (NDFD) and total bacteria population. Results. Gas production with both substrates was highest (p≤0.05) in the coculture at 3, 6 and 24 h. At 48 and 72 h, gas production in the cobra grass was highest (p≤0.05) in the coculture. The coculture and TRB did not differ (p>0.05) in terms of CH4, DMD and NDFD values at 48 and 72 h. With the cobra grass, NH3-N concentration was higher (p≤0.05) in the coculture than in the TRB. Conclusion. The gas production and dry matter degradation values of the water buffalo rumen cellulolytic bacteria consortia indicate them to be a promising alternative for improving cobra grass structural carbohydrates degradation when in coculture with bovine ruminal bacteria.


Article visits 1753 | PDF visits


Downloads

Download data is not yet available.
  1. Malherbe S, y Cloete TE. Lignocellulose biodegradation: fundamentals and applications. Rev. Environ Sci. Biotechnol 2002; 1(2):105-114. https://doi.org/10.1023/A:1020858910646
  2. Chanthakhoun V, Wanapat M, Kongmun P, and Cherdthong A. Comparison of ruminal fermentation characteristics and microbial population in swamp buffalo and cattle. Liv Sci 2012; 143(2-3):172-176. https://doi.org/10.1016/j.livsci.2011.09.009
  3. Lin B, Henderson G, Zou C, Cox F, Liang X, Janssen PH et al. Characterization of the rumen microbial community composition of buffalo breeds consuming diets typical of dairy production systems in Southern China. Anim Feed Sci Technol 2015; 207:75-84. https://doi.org/10.1016/j.anifeedsci.2015.06.013
  4. Franzolin R, Rosales FP, and Soares WVB. Effect of two energy and two protein sources in sugar cane based diets on the population of rumen ciliate protozoa in water buffalo (Bubalus bubalis) and zebu cattle (Bos taurus indicus). Reprod Nutr Dev 2006; 46(Suppl. 1): S15
  5. Puppo S, Bartocci S, Terramoccia S, and Grandoni F. Rumen microbial counts and in vivo digestibility in buffaloes and cattle given different diets. Anim Sci 2002; 75(2): 323-329.
  6. Bader J, Mast-Gerlach E, Popovic MK, Bajpai R, and Stahl U. Relevance of microbial coculture fermentations in biotechnology. J Appl Microbiol 2010; 109(2):371-387. https://doi.org/10.1111/j.1365-2672.2009.04659.x
  7. Sabra WD, Tjahjasari D, and Zeng A. Biosystems analysis and engineering of microbial consortia for industrial biotechnology. Eng Life Sci 2010; 10(5):407-421. https://doi.org/10.1002/elsc.201000111
  8. Davey ME, and O´toole GA. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 2000; 64(4):847-867. https://doi.org/10.1128/MMBR.64.4.847-867.2000
  9. INEGI. Anuario estadístico y geográfico de los Estados Unidos Mexicanos. Instituto Nacional de Estadística Geografía e Informática. (Acceso el 20 de junio de 2018). URL disponible en www.beta.inegi.org.mx/app/areasgeograficas/?ag=12023.
  10. NOM-062-ZOO-1999. Norma Oficial Mexicana, Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria. SENASICA, México. 22 de agosto de 2001. URL disponible en https://www.gob.mx/senasica/documentos/nom-062-zoo-1999.
  11. Sánchez-Santillán P, Cobos-Peralta MA, Hernández-Sánchez D, Álvarado AI, Espinosa-Victoria D, y Herrera-Haro JG. Uso de carbón activado para conservar bacterias celulolíticas liofilizadas. Agrociencia 2016. 50(5): 575-582.
  12. AOAC. Official Methods of Analysis (18th Ed) Association of official analytical chemist. Arlington, VA, USA 2007.
  13. Van Soest PJ, Roberton JB, and Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 1991; 74(10):3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  14. Hernández-Morales J, Sánchez-Santillán P, Torres-Salado N, Herrera-Pérez J, Rojas-García AR, Reyes-Vázquez I, y Mendoza-Nú-ez MA. Composición química y degradaciones in vitro de vainas y hojas de leguminosas arbóreas del trópico seco de México. Rev Mex Cienc Pec 2018; 9(01): 105-120. https://doi.org/10.22319/rmcp.v9i1.4332
  15. Stolaroff JK, Keit DW, and Lowry GV. Carbon dioxide capture from atmospheric air using sodium hydroxide spray. Environ Sci Technol 2008; 42(8):2728-2735. https://doi.org/10.1021/es702607w
  16. McCullough H. The determination of ammonia in whole blood by a direct colorimetric method. Clinica Chimica Acta 1967;17(2):297-304. https://doi.org/10.1016/0009-8981(67)90133-7
  17. SAS. Institute Inc. Statistical Analysis System, SAS, User's Guide: SAS Inst., Cary, NC. 2011. pp: 3154-3339.
  18. Zicarelli F, Calabrò S, Cutrignelli MI, Infascelli F, Tudisco R, Bovera F et al. In vitro fermentation characteristics of diets with different forage/concentrate ratios: comparison of rumen and faecal inocula. J Sci Food Agric 2011; 91(7): 1213-1221. https://doi.org/10.1002/jsfa.4302
  19. Gándara L, Borrajo CI, Fernández JA, Mercedes PM. Efecto de la fertilización nitrogenada y la edad del rebrote sobre el valor nutritivo de Brachiaria brizantha cv. "Marandú". FCA Uncuyo 2017; 49(1): 69-77.
  20. Bedoya-Mazo S, Noguera RR, y Posada SL. Effect of ruminal inoculum of buffalo, cattle and goat on dry matter degradation and methane production in vitro. LRRD 2016; 28: 5.
  21. Calabrò S, Infascelli F, Tudisco R, Musco N, Grossi M, Monastra G et al. Estimation of In vitro methane production in buffalo and cow. Buffalo Bull 2013; 32(2): 924-927.
  22. NRC. Nutrient requeriments of small ruminants sheep, goats, cervios, and new world camelidos, The National Academies Press 2007; USA. 362 p.
  23. Sánchez-Santillán P, y Cobos-Peralta MA. Producción in vitro de ácidos grasos volátiles de bacterias celulolíticas reactivadas y bacterias ruminales totales en sustratos celulósicos. Agrociencia 2016; 50(5): 565-574.
  24. Araujo RC, Pires AV, Mourão GB, Abdalla AL, and Sallem AMA. Use of blanks to determine in vitro net gas and methane production when using rumen fermentation modifiers. Anim Feed Sci Technol 2011; 166-167: 155-162. https://doi.org/10.1016/j.anifeedsci.2011.04.009
  25. Medjekal S, Bodas R, Bousseboua H, and López S. Evaluation of three medicinal plants for methane production potential fiber digestion and rumen fermentation in vitro. Energy Procedia 2017; 119: 632-641. https://doi.org/10.1016/j.egypro.2017.07.089
  26. Cobos PMA. Interacciones entre microorganismos ruminales. In: Microbiología Agrícola: hongos, bacterias, micro y macrofauna, control biológico y planta-microorganismo. Ed. Trillas 2007; México. 498-516 pp.
  27. Thurston B, Dawson KA, and Strobel HJ. Pentose utilization by the ruminal bacterium Ruminococcus albus. Appl. Environ. Microbiol 1994; 60(4): 1087-1092.
  28. Christensen RG, Eun JS, Yang SY, Min BR, and MacAdam JW. In vitro effects of birdsfoot trefoil (Lotus corniculatus L.) pasture on ruminal fermentation, microbial population, and methane production. Prof Anim Sci 2016; 33(4): 451-460. https://doi.org/10.15232/pas.2016-01558
  29. Chen Y, Penner GB, Li M, Oba M, and Guan LG. Changes in bacterial diversity associated with epithelial tissue in the beef cow rumen during the transition to a highgrain diet. Appl Environ Microbiol 2011; 77(16): 5770-5781. https://doi.org/10.1128/AEM.00375-11
  30. Wanapat M, Phesatcha K, and Kang S. Rumen adaptation of swamp buffaloes (Bubalus bubalis) by high level of urea supplementation when fed on rice straw-based diet. Trop Anim Health Prod 2016; 48/6): 1153-1140.

Sistema OJS 3.4.0.3 - Metabiblioteca |