Skip to main navigation menu Skip to main content Skip to site footer

Molecular evaluation of influenza A virus in swine at slaughterhouses in Colombia

Evaluación molecular de la presencia del virus de influenza A en cerdos en plantas de beneficio en Colombia



How to Cite
Flórez R, J., Vera A, V., Lora M, Ángela, & Ramírez-Nieto, G. (2018). Molecular evaluation of influenza A virus in swine at slaughterhouses in Colombia. Journal MVZ Cordoba, 23(S), 7013-7024. https://doi.org/10.21897/rmvz.1424

Dimensions
PlumX
Juan Flórez R
Víctor Vera A
Ángela Lora M
Gloria Ramírez-Nieto

Objective. To assess the presence of influenza A virus and to evaluate the impact of the 2009 pandemic H1N1 influenza virus on the endemic strains circulating in the Colombian swine population after its emergence and spread. Materials and methods. 369 lung tissue samples were collected from clinically normal slaughterhouse pigs from 11 geographic regions of Colombia, which were analyzed using qRT-PCR test for the detection of influenza A virus. Positive samples for molecular detection were processed to perform isolation trials in specific pathogen free chicken embryo eggs, and the presence of the virus was accomplished by hemagglutination test and RT-PCR assays. Results. Molecular detection techniques showed circulation of swine influenza viruses in five out of 11 geographic regions monitored. Likewise, sample testing by viral isolation analysis enabled successful recovery and confirmation of five viral strains from two geographic regions. Conclusions. It was possible to demonstrate that slaughterhouses represent a feasible alternative for research and characterization of influenza virus, allowing researchers to collect pig samples from different origins. They also provide a useful tool for achieving viral isolation and early detection of molecular changes that would help to anticipate the appearance of strains with pandemic and/or epidemic potential throughout the national territory.

 


Article visits 1292 | PDF visits


Downloads

Download data is not yet available.
  1. Alvarez J, Sarradell J, Kerkaert B, Bandyopadhyay D, Torremorell M, Morrison R, et al. Association of the presence of influenza A virus and porcine reproductive and respiratory syndrome virus in sow farms with post-weaning mortality. Prev Vet Med. Elsevier B.V.; 2015;121(3–4):240–5. https://doi.org/10.1016/j.prevetmed.2015.07.003
  2. Neira V, Rabinowitz P, Rendahl A, Paccha B, Gibbs SG, Torremorell M. Characterization of viral load, viability and persistence of influenza a virus in air and on surfaces of swine production facilities. PLoS One. 2016;11(1):1–11. https://doi.org/10.1371/journal.pone.0146616
  3. Pomorska-Mól M, Kwit K, Markowska-Daniel I, Kowalski C, Pejsak Z. Local and systemic immune response in pigs during subclinical and clinical swine influenza infection. Res Vet Sci. Elsevier Ltd; 2014;97(2):412–21.
  4. Janke BH. Clinicopathological Features of Swine Influenza. In: Richt JA, Webby RJ, editors. Swine Influenza: Current topics in microbiology and immunology. Verlag: Springer; 2013. p. 69–83.
  5. Detmer S, Gramer M, Goyal S, Torremorell M, Torrison J. Diagnostics and Surveillance for Swine Influenza. In: Richt JA, Webby RJ, editors. Swine Influenza: Current topics in microbiology and immunology. Berlin, Heidelberg: Springer; 2012. p. 85–112. https://doi.org/10.1007/82_2012_220
  6. Tsai KN, Chen GW. Influenza genome diversity and evolution. Microbes Infect. Elsevier Masson SAS; 2011;13(5):479–88. https://doi.org/10.1016/j.micinf.2011.01.013
  7. Mair CM, Ludwig K, Herrmann A, Sieben C. Receptor binding and pH stability — How influenza A virus hemagglutinin affects host-specific virus infection. Biochim Biophys Acta - Biomembr. Elsevier B.V.; 2014;1838(4):1153–68.
  8. Ito T, Gorman OT, Kawaoka Y, Bean WJ, Webster RG. Evolutionary analysis of the influenza A virus M gene with comparison of the M1 and M2 proteins. J Virol. 1991;65(10):5491–8.
  9. Rodriguez-Frandsen A, Alfonso R, Nieto A. Influenza virus polymerase: Functions on host range, inhibition of cellular response to infection and pathogenicity. Virus Res. Elsevier B.V.; 2015;209:1–16. https://doi.org/10.1016/j.virusres.2015.03.017
  10. Air GM. Influenza virus antigenicity and broadly neutralizing epitopes. Curr Opin Virol. Elsevier B.V.; 2015;11:113–21.
  11. Greenbaum BD, Li O, Poon L, Levine A, Rabadan R. Viral reassortment as an information exchange between viral segments. 2015;109(9):3341–6.
  12. Mehle A, Dugan VG, Taubenberger JK, Doudna JA. Reassortment and Mutation of the Avian Influenza Virus Polymerase PA Subunit Overcome Species Barriers. J Virol. 2012;86(3):1750–7. https://doi.org/10.1128/JVI.06203-11
  13. Sandbulte M, Spickler A, Zaabel P, Roth J. Optimal Use of Vaccines for Control of Influenza A Virus in Swine. Vaccines. 2015;3(1):22–73. https://doi.org/10.3390/vaccines3010022
  14. Dangi T, Jain A. Influenza Virus: A Brief Overview. Proc Natl Acad Sci India Sect B Biol Sci. 2012;82(1):111–21. https://doi.org/10.1007/s40011-011-0009-6
  15. Wu Y, Wu Y, Tefsen B, Shi Y, Gao GF. Bat-derived influenza-like viruses H17N10 and H18N11. Trends Microbiol. Elsevier Ltd; 2014;22(4):183–91. https://doi.org/10.1016/j.tim.2014.01.010
  16. Crisci E, Mussá T, Fraile L, Montoya M. Review: Influenza virus in pigs. Mol Immunol. Elsevier Ltd; 2013;55(3–4):200–11. https://doi.org/10.1016/j.molimm.2013.02.008
  17. Scholtissek C. Source for Influenza Pandemics. Eur J Epidemiol. 1994;10(4):456–8. https://doi.org/10.1007/BF01719674
  18. Neumann G, Kawaoka Y. Transmission of influenza A viruses. Virology. 2015;479–480C:234–46.
  19. Wang J-Y, Chen Z-L, Li C-S, Cao X, Wang R, Tang C, et al. The distribution of sialic acid receptors of avian influenza virus in the reproductive tract of laying hens. Mol Cell Probes. Elsevier Ltd; 2015;29(2):129–34.
  20. Nelson MI, Gramer MR, Vincent AL, Holmes EC. Global transmission of influenza viruses from humans to swine. J Gen Virol. 2012;93(Pt_10):2195–203.
  21. Kong W, Wang F, Dong B, Ou C, Meng D, Liu J, et al. Novel reassortant influenza viruses between pandemic (H1N1) 2009 and other influenza viruses pose a risk to public health. Microb Pathog. Elsevier Ltd; 2015;89:62–72. https://doi.org/10.1016/j.micpath.2015.09.002
  22. Ramirez-Nieto GC. First isolation and identification of H1N1 swine influenza viruses in Colombian pig farms. Health (Irvine Calif). 2012;4(10):983–90. https://doi.org/10.4236/health.2012.430150
  23. Pereda A, Rimondi A, Cappuccio J, Sanguinetti R, Angel M, Ye J, et al. Evidence of reassortment of pandemic H1N1 influenza virus in swine in Argentina: Are we facing the expansion of potential epicenters of influenza emergence? Influenza Other Respi Viruses. 2011;5(6):409–12. https://doi.org/10.1111/j.1750-2659.2011.00246.x
  24. Chiapponi C, Baioni L, Luppi A, Moreno A, Castellan A, Foni E. Temporal insight into the natural generation of a new reassortant porcine influenza virus in a swine holding. Vet Microbiol. Elsevier B.V.; 2014;174(1–2):9–15. https://doi.org/10.1016/j.vetmic.2014.08.026
  25. Qi X, Pan Y, Qin Y, Zu R, Tang F, Zhou M, et al. Molecular characterization of avian-like H1N1 swine influenza a viruses isolated in Eastern China, 2011. Virol Sin. 2012;27(5):292–8. https://doi.org/10.1007/s12250-012-3262-9
  26. Fan X, Zhu H, Zhou B, Smith DK, Chen X, Lam TT-Y, et al. Emergence and dissemination of a swine H3N2 reassortant influenza virus with 2009 pandemic H1N1 genes in pigs in China. J Virol. 2012;86(4):2375–8. https://doi.org/10.1128/JVI.06824-11
  27. Bowman AS, Nolting JM, Nelson SW, Slemons RD. Subclinical influenza virus A infections in pigs exhibited at agricultural fairs, Ohio, USA, 2009-2011. Emerg Infect Dis. 2012;18(12):1945–50. https://doi.org/10.3201/eid1812.121116
  28. Dagan B, Services FV, Health A, Dagan B, Consultant VP, Health A, et al. Seroepidemiology Survey and Isolation of Swine Influenza Viruses from Subclinical Infections in Israel During the Years 2009-2011. Islarel Jor¿unal Vet Med. 2014;69(2):62–7.
  29. Ma W, Liu Q, Bawa B, Qiao C, Qi W, Shen H, et al. The neuraminidase and matrix genes of the 2009 pandemic influenza H1N1 virus cooperate functionally to facilitate efficient replication and transmissibility in pigs. J Gen Virol. 2012;93(6):1261–8. https://doi.org/10.1099/vir.0.040535-0
  30. Brookes SM, Nú-ez A, Choudhury B, Matrosovich M, Essen SC, Clifford D, et al. Replication, pathogenesis and transmission of pandemic (H1N1) 2009 virus in non-immune pigs. PLoS One. 2010;5(2). https://doi.org/10.1371/journal.pone.0009068

Sistema OJS 3.4.0.3 - Metabiblioteca |