Skip to main navigation menu Skip to main content Skip to site footer

Spatial distribution and evaluation of environmental pollution by mercury in the Mojana region, Colombia

Distribución espacial y evaluación de la contaminación ambiental por mercurio en la región de la Mojana, Colombia



How to Cite
Marrugo Negrete, J., Pinedo-Hernández, J., Paternina–Uribe, R., Quiroz-Aguas, L., & Pacheco-Florez, S. (2018). Spatial distribution and evaluation of environmental pollution by mercury in the Mojana region, Colombia. Journal MVZ Cordoba, 23(S), 7062-7075. https://doi.org/10.21897/rmvz.1481

Dimensions
PlumX
José Marrugo Negrete
José Pinedo-Hernández
Roberth Paternina–Uribe
Liliana Quiroz-Aguas
Sergio Pacheco-Florez

 

 Objective. To evaluate the distribution of total mercury (THg) in surface sediments, fish, hair, rice plants, and macrophytes, as well as the geoaccumulation index by THg in sediments and the risk potential for fish consumption in different municipalities affected by gold mining activities that have developed around in the Mojana region, Colombia. Materials and methods. The THg concentration was determined by thermal decomposition, using a direct DMA-80 mercury analyzer. Results. On average, the concentrations of THg in fish was 0.223±0.027 μg/g. Of the total fish samples, 11.6% exceeded the permissible limit established by the World Health Organization (0.5 μg/g), being 4.2% for non-carnivorous species and 7.4% for carnivorous species. Of the fish species, 76.9% showed risk index (HI) values greater than 1. The Geoaccumulation Index (Igeo) in sediments shows a contamination degree from non-polluted to moderate pollution for the different sampling stations. Hair THg concentrations ranged between 0.17- 8.8 μg/g. Of the population, 47% exceeds the permissible limit established as a reference by the USEPA (1 μg/g). THg concentrations in macrophytes (Eichhornia crassipes) and rice crop plants were higher in sampling stations that receive water currents that carry contaminating loads from mining areas, a similar trend presented for sediments and fish. Conclusions. Mining activities have generated a process of gradual contamination by Hg in the food chain and currently levels in fish, rice and hair represent a serious concern for human health.


Article visits 4260 | PDF visits


Downloads

Download data is not yet available.
  1. Cordy P, Veiga MM, Salih I, Al-Saadi S, Console S, Garcia O, et al. Mrcury contamination from artisanal gold mining in Antioquia, Colombia: the world's highest per capita mercury pollution. Sci Total Environ. 2011; 410:154–160. https://doi.org/10.1016/j.scitotenv.2011.09.006
  2. Drace K, Kiefer AM, Veiga MM, Williams MK, Ascari B, Knapper KA, et al. Mercuryfree, small-scale artisanal gold mining in Mozambique: utilization of magnets to isolate gold at clean tech mine. J Clean Prod. 2012; 32:88–95. https://doi.org/10.1016/j.jclepro.2012.03.022
  3. García O, Veiga MM, Cordy P, Suescún OE, Molina JM, Roeser M. Artisanal gold mining in Antioquia, Colombia: a successful case of mercury reduction. J Clean Prod. 2015; 90:244-252. https://doi.org/10.1016/j.jclepro.2014.11.032
  4. Li L, Flora JRV, Caicedo JM, Berge ND. Investigating the role of feedstock properties and process conditions on products formed during the hydrothermal carbonization of organics using regression techniques. Bioresour Technol. 2015; 187:263–274. https://doi.org/10.1016/j.biortech.2015.03.054
  5. Cordy P, Veiga M, Bernaudat L, Garcia O. Successful airborne mercury reductions in Colombia. J Clean Prod. 2015; 108:992- 1001. https://doi.org/10.1016/j.jclepro.2015.06.102
  6. Marrugo-Negrete J, Olivero Verbel J, Lans Ceballos E, Norberto Benitez L. Total mercury and methylmercury concentrations in fish from the Mojana region of Colombia. Environ Geochem Health. 2008; 30:21–30. https://doi.org/10.1007/s10653-007-9104-2
  7. Pinedo-Hernández J, Marrugo-Negrete J, Díez S. Speciation and bioavailability of mercury in sediments impacted by gold mining in Colombia. Chemosphere. 2015; 119:1289- 1295. https://doi.org/10.1016/j.chemosphere.2014.09.044
  8. Marrugo-Negrete J, Durango-Hernández J, Pinedo-Hernández J, Olivero-Verbel J, Díez S. Phytoremediation of mercury-contaminated soils by Jatropha curcas. Chemosphere. 2015; 127:58–63. https://doi.org/10.1016/j.chemosphere.2014.12.073
  9. Olivero-Verbel J, Caballero-Gallardo K, TurizoTapia A. Mercury in the gold mining district of San Martin de Loba, South of Bolivar (Colombia). Environ Sci Pollut Res. 2015; 22:5895–5907. https://doi.org/10.1007/s11356-014-3724-8
  10. Calao C, Marrugo J. Efectos genotóxicos asociados a metales pesados en una población humana de la región de La Mojana, Colombia, 2013. Biomédica. 2015; 35(2):139-151.
  11. Marrugo-Negrete J, Pinedo-Hernández J, Díez S. Geochemistry of mercury in tropical swamps impacted by gold mining. Chemosphere. 2015; 134: 44–51 7075
  12. Mechora Š, Germ M, Stibilj V. Monitoring of selenium in macrophytes— the case of Slovenia. Chemosphere. 2014; 111:464–470. https://doi.org/10.1016/j.chemosphere.2014.03.133
  13. Marrugo-Negrete J, Pinedo-Hernández J, Díez S. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ Res. 2017; 154:380–388. https://doi.org/10.1016/j.envres.2017.01.021
  14. Fuentes-Gandara F, Pinedo-Hernández J, Marrugo-Negrete J., Díez S. Human health impacts of exposure to metals through extreme consumption of fish from the Colombian Caribbean Sea. Environ Geochem Health. 2016; 40(1):229–242. https://doi.org/10.1007/s10653-016-9896-z
  15. Meng B, Feng XB, Qiu GL, Cai Y, Wang DY, Li P, Shang LH, Sommar J. Distribution patterns of inorganic mercury and methylmercury in tissues of rice (Oryza sativa L.) plants and possible bioaccumulation pathways. J Agric Food Chem. 2010; 58:4951-4958. https://doi.org/10.1021/jf904557x
  16. Ruiz-Guzman J, Marrugo-Negrete JL, Diez S. Human exposure to mercury through fish consumption: risk assessment of riverside inhabitants of the Urrá reservoir. Colombia. Human and Ecological Risk Assessment: An International Journal. 2014; 20(5):1151– 1163. DOI: https://doi.org/10.1080/108070 39.2013.862068
  17. Sedlácková L, Kruzíková K, Svobodov, Z. Mercury speciation in fish muscles from major Czech rivers and assessment of health risks. Food Chemistry. 2014; 150:360-365. https://doi.org/10.1016/j.foodchem.2013.10.041
  18. Olivero J, Johnson B, Mendoza C, Paz R, Olivero R. Mercury in the aquatic environment of The Village of Caimito at The Mojana Region, North of Colombia. Water Air and Soil Pollution. 2004; 159:409–420. https://doi.org/10.1023/B:WATE.0000049162.54404.76
  19. Marrugo-Negrete J, Olivero Verbel J, Norberto Benitez L. Distribution of Mercury in Several Environmental Compartments in an Aquatic Ecosystem Impacted by Gold Mining in Northern Colombia. Arch Environ Contam Toxicol. 2008; 55(2):305-316. https://doi.org/10.1007/s00244-007-9129-7
  20. Marrugo-Negrete J, Ruiz-Guzmán J, Díez S. Relationship between mercury levels in hair and fish consumption in a population living near a hydroelectric tropical dam. Biol Trace Elem Res. 2013;151(2):187-94. https://doi.org/10.1007/s12011-012-9561-z
  21. Vieira SM, de Almeida R, Holanda IB, Mussy MH, Galvão RC, Crispim PT, et al. Total and methyl-mercury in hair and milk of mothers living in the city of Porto Velho and in villages along the Rio Madeira, Amazon, Brazil. Int J Hyg Environ Health. 2013; 216:682–689. https://doi.org/10.1016/j.ijheh.2012.12.011
  22. Meng B, Feng XB, Qiu GL, Cai Y, Wang DY, Li P, Shang LH, Sommar J. Distribution patterns of inorganic mercury and methylmercury in tissues of rice (Oryza sativa L.) plants and possible bioaccumulation pathways. J Agric Food Chem. 2010; 58:4951-4958. https://doi.org/10.1021/jf904557x
  23. Argumedo M, Consuegra A, Vidal JV, Marrugo JL. Exposición a mercurio en habitantes del municipio de San Marcos (departamento de Sucre) debida a la ingesta de arroz (Oryza sativa) contaminado. Rev Salud Pública. 2013; 15(6):903-915.
  24. Argumedo MP, Vergara C, Vidal J, Marrugo JL. Evaluación de la concentración de mercurio en arroz (Oryza sativa) crudo y cocido procedente del municipio de San Marcos– Sucre y zona aurífera del municipio de Ayapel – Córdoba. Rev Univ Ind Santander Salud. 2015; 47(2):169-177.
  25. Olivero J, Jhonson B, Arguello E. Human exposure to mercury due to fish consumption in San Jorge river basin, Colombia (South America). Sci Total Environ. 2002; 289(1-3):41–47. https://doi.org/10.1016/S0048-9697(01)01018-X
  26. Gracia L, Marrugo JL, Alvis EM. Contaminación por mercurio en humanos y peces en el municipio de Ayapel, Córdoba, Colombia, 2009. Rev Fac Nac Salud Pública 2010; 28(2):118-124
  27. Olivero-Verbel J, Caballero-Gallardo K, Marrugo-Negrete J. Relationship between localization of gold mining areas and hair mercury levels in people from Bolivar, North of Colombia. Biol. Trace Elem Res. 2011;144: 118–132. https://doi.org/10.1007/s12011-011-9046-5
  28. Olivero-Verbel J, Caballero-Gallardo K, TurizoTapia A. Mercury in the gold mining district of San Martin de Loba, South of Bolivar (Colombia). Environ. Sci. Pollut. Res. 2015; 22:5895–5907. https://doi.org/10.1007/s11356-014-3724-8
  29. Olivero-Verbel J, Carranza-Lopez L, CaballeroGallardo K, Ripoll-Arboleda A, Mu-oz-Sosa D. Human exposure and risk assessment associated with mercury pollution in the Caqueta River, Colombian Amazon. Environ Sci Pollut Res. 2016; 23:20761–20771. https://doi.org/10.1007/s11356-016-7255-3

Sistema OJS 3.4.0.3 - Metabiblioteca |