Skip to main navigation menu Skip to main content Skip to site footer

Equilibrium, kinetic and thermodynamic of direct blue 86 dye adsorption on activated carbon obtained from manioc husk DB-86 dye adsorption

Equilibrio, cinética y termodinámica de la adsorción del colorante DB-86 sobre carbón activado de la cáscara de yuca



How to Cite
Castellar-Ortega, G., Mendoza Colina, E. D. . J., Angulo Mercado, E. R., Paula Pereira, Z. A., Rosso Bravo, M. C., & Jaramillo Colpas, J. E. (2019). Equilibrium, kinetic and thermodynamic of direct blue 86 dye adsorption on activated carbon obtained from manioc husk DB-86 dye adsorption. Journal MVZ Cordoba, 24(2), 7231-7238. https://doi.org/10.21897/rmvz.1700

Dimensions
PlumX
Grey Castellar-Ortega
Evert De Jesus Mendoza Colina
Edgardo Ramon Angulo Mercado
Zilena Alejandra Paula Pereira
María Camila Rosso Bravo
Javier Enrique Jaramillo Colpas

Grey Castellar-Ortega,

Atlantic University, Basic Sciences Faculty, Research Group on Microalgae Biotechnology, Applied Physicochemical and Environmental Studies, km 7 old Road to Puerto Colombia, Colombia

Objective. To establish by means of experimenting by batch the capacity of removal, the kinetics and adsorption thermodynamics of activated carbon prepared from manioc husk (Manihot esculenta) in the removal of direct blue 86 dye. Materials and methods. Firstly, the experimental methodology worked on the preparation of activated carbon by chemical activation of manioc husk with H3PO4 calcined at 530°C. In the characterization the texture properties were determined by means of the blue methylene and iodine indices, the basic and acidic functional groups were quantified by the Boehm method, and the proximate analyses were done following the norms ASTM D2867-70, ASTM D2866 and ASTM D2866-94.  During the batch studies, the effect of several parameters over the adsorption capacity was evaluated: pH (2, 4, 8 and 10), temperature (25, 30 and 40°C) and initial concentration of the dye (20, 40, 60, 80 and 100 mg/L). Both physicochemical and adsorption characteristics of the activated carbon from manioc husk (CAY) were compared against those of a commercial brand (CAM). Results. The results of characterization showed that both carbons have a chemistry heterogeneous surface, acidic for CAY and basic for CAM. The maximum capacity obtained was 6.1 mg/g for CAY and 3.7 mg/g for CAM. The thermodynamic calculations showed that the removal was spontaneous. The kinetics for both carbon samples fits a pseudo second-order model. Conclusion. The activated carbon obtained from the manioc husk can be considered an efficient adsorbent for the removal of dyes.


Article visits 2351 | PDF visits


Downloads

Download data is not yet available.
  1. Anirudhan TS, Ramachandran M. Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): Kinetic and competitive adsorption isotherm. Process Saf Environ Prot. 2015; 95:215–225. https://doi.org/10.1016/j.psep.2015.03.003
  2. Arica MY, Bayramoglu G. Polyaniline coated magnetic carboxymethylcellulose beads for selective removal of uranium ions from aqueous solution. J Radioanal Nucl Chem. 2016; 310(2):711–724. https://doi.org/10.1007/s10967-016-4828-z
  3. Bayramoglu G, Akbulut A, Liman G, Arica MY. Removal of metal complexed azo dyes from aqueous solution using tris(2-aminoethyl) amine ligand modified magnetic p(GMA-EGDMA) cationic resin: Adsorption, isotherm and kinetic studies. Chem Eng Res Des. 2017; 124:85–97. https://doi.org/10.1016/j.cherd.2017.06.005
  4. Aljeboree AM, Alshirifi AN, Alkaim AF. Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbón. Arab J Chem. 2017; 10(Supl 2):S3381–S3393. https://doi.org/10.1016/j.arabjc.2014.01.020
  5. Castellar G, Angulo E, Zambrano A, Charris D. Equilibrio de adsorción del colorante azul de metileno sobre carbón activado. Rev UDCA Act & Div Cient. 2013; 16(1):263–271. https://revistas.udca.edu.co/index.php/ruadc/article/view/882
  6. Chabane L, Cheknane B, Zermane F, Bouras O, Baudu M. Synthesis and characterization of reinforced hybridporous beads: application to the adsorption of malachitegreen in aqueous solution. Chem Eng Res Des. 2017; 120: 291–302. https://doi.org/10.1016/j.cherd.2016.12.014
  7. Sari AA, Muryanto ST, Hadibarata T. Development of bioreactor systems for decolorization of Reactive Green 19 using white rot fungus. Desalin Water Treat. 2016; 57(15):7029–7039. https://doi.org/10.1080/19443994.2015.1012121
  8. Mirzadeh SS, Khezri SM, Rezaei S, Forootanfar H, Mahvi AH, Faramarzi MA. Decolorization of two synthetic dyes using the purified laccase of Paraconiothyrium variabile immobilized on porous silica beads. J Environ Health Sci Eng. 2014; 12(6):1-9. https://doi.org/10.1186/2052-336x-12-6
  9. Tavengwa NT, Cukrowska E, Chimuka L. Synthesis, adsorption and selectivity studies of N-propyl quaternized magnetic poly(4-vinylpyridine) for hexavalent chromium. Talanta. 2013; 116:670–677. https://doi.org/10.1016/j.talanta.2013.07.034
  10. Kyzas GZ, Lazaridis NK, Mitropoulos A. Removal of dyes from aqueous solutions with untreated coffee residues as potential low-cost adsorbents: Equilibrium, reuse and thermodynamic approach. Chem Eng J. 2012; 189-190: 148-159. https://doi.org/10.1016/j.cej.2012.02.045
  11. Ho YS, McKay G. Sorption of dyes and copper ions onto biosorbents. Process Biochem. 2003; 38(7):1047-1061. https://doi.org/10.1016/s0032-9592(02)00239-x
  12. Gonçalves M, Guerreiro M, De Oliveira L, De Castro C. A friendly environmental material: iron oxide dispersed over activated carbon from coffee husk for organic pollutants removal. J Environ Manage. 2013; 127:206-211. https://doi.org/10.1016/j.jenvman.2013.05.017
  13. Hu Z, Srinivasan MP. Preparation of high-surface-area activated carbons from coconut shell. Microporous Mesoporous Mater. 1999; 27(1):11-18. https://doi.org/10.1016/s1387-1811(98)00183-8
  14. Li G, Zhu W, Zhang C, Zhang S, Liu L, Zhu L, Zhao W. Effect of a magnetic field on the adsorptive removal of methylene blue onto wheat straw biochar. Bioresour Technol. 2016; 206:16-22. https://doi.org/10.1016/j.biortech.2015.12.087
  15. Sun L, Chen D, Wan S, Yu Z. Performance, kinetics, and equilibrium of methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids. Bioresour Technol. 2015; 198:300-308. https://doi.org/10.1016/j.biortech.2015.09.026
  16. Jung KW, Choi BH, Hwang MJ, Jeong TU, Ahn KH. Fabrication of granular activated carbons derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of acid orange 7 and methylene blue. Bioresour Technol. 2016; 219:185-195. https://doi.org/10.1016/j.biortech.2016.07.098
  17. Albis A, López AJ, Romero MC. Remoción de azul de metileno de soluciones acuosas utilizando cáscara de yuca (Manihot esculenta) modificada con ácido fosfórico. Prospectiva. 2017; 15(2):60-73. https://doi.org/10.15665/rp.v15i2.777
  18. Gonçalves R, Martins C, Mendes N, Farias L, Ferreira RC, Oliveira A, Oliveira M, Ilhéu R. Preparation of activated carbons from cocoa shells and siriguela seeds using H3PO4 and ZnCL2 as activating agents for BSA and α-lactalbumin adsorption. Fuel Process Technol. 2014; 126:476–486. https://doi.org/10.1016/j.fuproc.2014.06.001
  19. Boehm HP. Chemical identification of surface groups. Adv Catal. 1966; 16: 179–274. https://doi.org/10.1016/S0360-0564(08)60354-5
  20. Nunell GV, Fernández ME, Bonelli PR, Cukierman AL. Conversion of biomass from an invasive species into activated carbons for removal of nitrate from wastewater. Biomass Bioenerg. 2012; 44:87-95. https://doi.org/10.1016/j.biombioe.2012.05.001
  21. Figueroa D, Moreno A, Hormaza A. Equilibrio, termodinámica y modelos cinéticos en la adsorción de Rojo 40 sobre tuza de maíz. Rev Ing Univ Medellín. 2015; 14(26):105-120. https://doi.org/10.22395/rium.v14n26a7
  22. Konicki W, Aleksandrzak M, Mijowska E. Equilibrium, kinetic and thermodynamic studies on adsorption of cationic dyes from aqueous solutions using graphene oxide. Chem Eng Res Des. 2017; 123:35–49. https://doi.org/10.1016/j.cherd.2017.03.036
  23. Contescu A, Contescu C, Putyera K, Schwarz J. Surface acidity of carbons characterized by their continuous pK distribution and Böehm titration. Carbon 1997; 35(1):83-94. https://doi.org/10.1016/s0008-6223(96)00125-x
  24. Valencia J, Castellar G. Predicción de las curvas de ruptura para la remoción de plomo (II) en disolución acuosa sobre carbón activado en una columna empacada. Rev Fac Ing Univ Antioquia. 2013; 66:141-158. http://aprendeenlinea.udea.edu.co/revistas/index.php/ingenieria/article/view/15231
  25. Maldonado-Hódar FJ, Morales-Torres S, Perez-Cardenas AF, Carrasco-Marín F. Química superficial de los materiales de carbón. Bol Grupo Español Carbón. 2011; 20:10-15. http://www.gecarbon.org/Boletines/articulos/boletinGEC_020_art.3.pdf
  26. Rincón-Silva N, Ramirez-Gomez W, Mojica-Sánchez L, Blanco-Martínez D, Giraldo L, Moreno-Piraján J. Obtención de carbones activados a partir de semillas de eucalipto, por activación química con H3PO4. Caracterización y evaluación de la capacidad de absorción de fenol desde solución acuosa. Ingeniería y Competitividad. 2014; 16(1):207-219. https://doi.org/10.25100/iyc.v16i1.3725
  27. Kumar PS, Ramalingam S, Senthamarai C, Niranjanaa M, Vijayalakshmi P, Sivanesan S. Adsorption of dye from aqueous solution by cashew nut shell: studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Desalination. 2010; 261(1-2):52–60. https://doi.org/10.1016/j.desal.2010.05.032
  28. Calvete T, Lima EC, Cardoso NF, Vaghetti JCP, Dias SLP, Pavan FA. Application of carbon adsorbents prepared from Brazilian-pine fruit shell for the removal of reactive orange 16 from aqueous solution: Kinetic, equilibrium, and thermodynamic studies. J Environ Manage. 2010; 91(8):1695-1706. https://doi.org/10.1016/j.jenvman.2010.03.013
  29. Leechart P, Nakbanpote W, Thiravetyan P. Application of ‘waste’ wood-shaving bottom ash for adsorption of azo reactive dye. J Environ Manage. 2009; 90(2):912-920. https://doi.org/10.1016/j.jenvman.2008.02.005
  30. Li Q, Yue QY, Su Y, Gao BY, Sun HJ. Equilibrium, thermodynamics and process design to minimize adsorbent amount for the adsorption of acid dyes onto cationic polymer-loaded bentonite. Chem Eng J. 2010; 158(3):489–497. https://doi.org/10.1016/j.cej.2010.01.033
  31. Von Oepen B, Kördel W, Klein W. Sorption of nonpolar and polar compounds to soils: processes, measurements and experience with the applicability of the modified OECD-Guideline 106. Chemosphere. 1991; 22(3-4):285–304. https://doi.org/10.1016/0045-6535(91)90318-8
  32. Gu B, Schmitt J, Chen Z, Liang L, McCarthy JF. Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environ Sci Technol. 1994; 28(1):38-46. https://doi.org/10.1021/es00050a007

Sistema OJS 3.4.0.3 - Metabiblioteca |