Skip to main navigation menu Skip to main content Skip to site footer

Potentialities of the microbial consortium Curvularia kusanoi -Trichoderma pleuroticola as a biological pretreatment for the degradation of fibrous sources

Potencialidades del consorcio microbiano Curvularia kusanoi -Trichoderma pleuroticola como pretratamiento biológico para la degradación de fuentes fibrosas



How to Cite
Alberto-Vazquez, M., Valiño-Cabreras, E. C. ., Torta, L. ., Laudicina, V. A. ., Sardina, M. T. ., & Mirabile, G. . (2022). Potentialities of the microbial consortium Curvularia kusanoi -Trichoderma pleuroticola as a biological pretreatment for the degradation of fibrous sources. Journal MVZ Cordoba, 27(2), e2559. https://doi.org/10.21897/rmvz.2559

Dimensions
PlumX
Elaine C. Valiño-Cabreras
Livio Torta
Vito Armando Laudicina
Maria Teresa Sardina
Giulia Mirabile

Maryen Alberto-Vazquez,

1Instituto de Ciencia Animal (ICA), San José de Las Lajas, Mayabeque, Cuba


Elaine C. Valiño-Cabreras,

Instituto de Ciencia Animal (ICA), San José de Las Lajas, Mayabeque, Cuba


Livio Torta,

Università degli Studi di Palermo, Dipartmento di Scienze Agrarie, Alimentari e Forestali, Italy.


Vito Armando Laudicina,

Università degli Studi di Palermo, Dipartmento di Scienze Agrarie, Alimentari e Forestali, Italy.


Maria Teresa Sardina,

Università degli Studi di Palermo, Dipartmento di Scienze Agrarie, Alimentari e Forestali, Italy.


Giulia Mirabile,

Università degli Studi di Palermo, Dipartmento di Scienze Agrarie, Alimentari e Forestali, Italy


Objective. To evaluate the potentiality of the microbial consortium Curvularia kusanoi L7- Trichoderma pleuroticola as biological pretreatment of high fiber sources destined for animal production. Materials and methods. The Strains used where Curvularia kusanoi L7 and Trichoderma pleuroticola. The degradative potential was evaluated through the production kinetics of cellulolytic (endo-1,4-β-glucanase and exo-1,4-β-glucanase) and ligninolytics enzymes (laccase and peroxidase) in solid submerged fermentation of bran wheat and sugarcane bagasse. The growth of the co culture in plates was analyzed. The effect of the consortium on the carbon mineralization of raw wheat straw was determined and the degree of fiber degradation was evaluated by infrared spectroscopy (IR). Resulted. Both strains showed high cellulolytic production. Only C. kusanoi L7 showed ligninolytic activity, with a maximum laccase activity of 1400 U / L. No antagonism was found between the strains and the results of carbon mineralization and evaluation of their final products by IR indicate the effectiveness of the consortium to degrade the cell wall more efficiently than each of the strains individually. Conclusions. It is concluded that the microbial consortium C. kusanoi L7-T. pleuroticola has great potential for structural modification of fibrous sources destined for animal feeding.


Article visits 306 | PDF visits


Downloads

Download data is not yet available.
  1. Isikgor F, Remzi C. Lignocellulosic Biomass: A Sustainable Platform for Production of Bio-Based Chemicals and Polymers. Polym. Chem. 2015. 6:4497-4559. https://doi.org/10.1039/C5PY00263J.
  2. Aguiar N, Chicaiza E, Santana K, Caicedo WO. Composición química de subproductos agroindustriales destinados para la alimentación de cerdos. RCCS. 2019. https://www.eumed.net/rev/caribe/2019/04/subproductosalimentacioncerdos.htmL/
  3. Carlsson M, Lagerkvist A, Morgan F. The effects of substrate pre-treatment on anaerobic digestion systems: A review. J Waste Manag. 2012; 32(9):1634-1650. https://doi.org/10.1016/j.wasman.2012.04.016.
  4. Van Dyk JS, Pletschke BI. A reviews of lignocelluloses bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes factor affecting enzymes, conversion and synergy. Biotechnol. Adv. 2012; 30:1458-1480. http://dx.doi.org/10.1016/j.biotechadv.2012.03.002
  5. Singh GD, Singh HO, Kaur S, Bansal Sl, Kaur SB. Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Ind Crops Prod. 2011; 34(1):1160-1167. https://doi.org/10.1016/j.indcrop.2011.04.001.
  6. Nobles MK. Cultural characters as a guide to the taxonomy and phylogeny of the polyporaceae Detection of poliphenoloxidase in fungi. Can J Bot. 1958; 36(6):883-926. https://doi.org/10.1139/b58-071/.
  7. Wang LY, Cheng GN, May AS. Fungal solid-state fermentation and various methods of enhancement in cellulases production. Biomass Bioenergy. 2014; 67:319-338. https://doi.org/10.1016/j.biombioe.2014.05.013
  8. Adney W, Baker J. Measurement of cellulase activities. Laboratory Analytical Procedures National Renewable Energy Laboratory, Golden, Co; 1996. http://www.nrel.gov/biomass/pdfs/42628.pdf
  9. Mandels M, Andreotti RE, Roche C. Measurement of sacarifying cellulase. Biotechnol Bioeng Symp. 1976; 6:1471-1493. https://doi.org/10.1186/1754-6834-2-21
  10. Perna V, Agger JW, Holck J, Meye AS. Multiple Reaction Monitoring for quantitative laccase kinetics by LC-MS. Sci Rep. 2018; 8:8114. https://doi.org/10.1038/s41598-018-26523-0
  11. Casciello C, Tonin F, Berini F, Fasoli E, Marinelli F, Pollegioni L, Rosini E. A valuable peroxidase activity from the novel species Nonomuraea gerenzanensis growing on alkali lignin. Biotechnol. Rep 2017. 13:49–57. https://doi.org/10.1016/j.btre.2016.12.005.
  12. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW. InfoStat versión. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina; 2012. http://www.infostat.com.ar
  13. He Y, Zhu M, Huang J, Hsiang T, Zheng,L. Biocontrol potential of a Bacillus subtilis strain BJ-1 against the rice blast fungus Magnaporthe oryzae. Can J Plant Pathol 2019; 41(1):47-59. https://doi.org/10.1080/07060661.2018.1564792
  14. Duncan DB. Multiple range and multiple F tests. Biometrics. 1955; 11 (1):1-42. https://doi.org/10.2307/3001478
  15. Taravilla AO, Moreno AD, Demuez M, Ibarra D, Pejó E, González C, Ballesteros M. Unraveling the effects of laccase treatment on enzymatic hydrolysis of steam-exploded wheat straw. Bioresour Technol. 2015; 175:209–215. https://doi.org/10.1016/j.biortech.2014.10.086
  16. Reid ID. Biodegradation of lignin. Can J Bot. 1995; 73(S1):1011-1018. https://doi.org/10.1139/b95-351
  17. Valiño EC, Savón L, Elías A, Rodríguez M, Albelo N. Nutritive value improvement of seasonal legumes Vigna unguiculata, Canavalia ensiformis, Stizolobium niveum, Lablab purpureus, through processing their grains by Trichoderma viride M5-2 cellulases. Cuba. J Agric Sci. 2015; 49(1):81. http://www.cjascience.com/index.php/CJAS/article/view/552
  18. Valiño EC, Elías A, Torres V, Carrasco T, y Albelo N. Improvement of sugarcane bagasse composition by the strain Trichoderma viride M5-2 in a solid-state fermentation bioreactor. Cuba. J Agric Sci. 2004; 38:145. https://eurekamag.com/research/004/196/004196634.php
  19. García N, Bermúdez RC, Téllez I, Chávez M, Perraud I. Enzimas lacasa en inóculos de Pleurotus spp. Rev Quím Tecnol. 2017; 37(1):33-39. http://dx.doi.org/10.1099/00221287-148-7-2159
  20. Bello A, Machido DA, Mohammed AI, Ado SA. Optimization of laccase production by Curvularia lunata using maize cob as substrate. FUDMA Journal of Sciences. 2020; 4(4):460-468. https://doi.org/10.33003/fjs-2020-0404-503
  21. Janusz G, Czuryło FM, Rola B, Sulej J, Pawlik A, Siwulski M, Rogalski J. Laccase production and metabolic diversity among Flammulina velutipes strains. World J Microbiol. Biotechnol. 2015; 31:121–133. https://doi.org/10.1007/s11274-014-1769.
  22. Lillington P, Leggieri P, Heom K, O’Malley M. Nature’s recyclers: anaerobic microbial communities drive crude biomass deconstruction. Curr Opin. 2020; 62:38-47. https://doi.org/10.1016/j.copbio.2019.08.015/
  23. Ghorai S, Banik SP, Verma D, Chowdhury S, Khowala S. Fungal biotechnology in food and feed processing. Int Food Res J. 2009; 42 (5-6):577-587. https://doi.org/10.1016/j.foodres.2009.02.019.
  24. Medina GE, Barragán H, Hernández CE, Martínez CA, Soto G. Uso de basidiomicetos nativos en la biotransformación del pasto buffel (Cenchrus ciliaris) para mejorar la calidad nutricional. Rev Mex Mic. 2016; 43:31-35. http://scientiafungorum.org.mx/index.php/micologia/article/view/1153/1332
  25. Ribeiro L, Pinheiro V, Outor D, Mourão J, Bezzerra RMF, Días AA, Bennett RN, Marqués G, Rodrigues MAM. Effects of the dietary incorporation of untreated and white-rot fungi (Ganoderma resinaceum) pre-treated olive leaves on growing rabbits. Anim Feed Sci Technol. 2012; 173(3-4):244-251. https://doi.org/10.1016/j.anifeedsci.2012.01.014.
  26. Saratale RG, Saratale GD, Kalyani DC, Chang JS, Govindwar SP. Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium. Bioresour Technol. 2009; 100(9):2493-2500. https://doi.org/10.1016/j.biortech.2008.12.013.
  27. Odelade KA, Babalola OO. Bacteria, Fungi and Archaea Domains in Rhizospheric Soil and Their Effects in Enhancing Agricultural Productivity. Int J Environ Res Public Health. 2019; 16(20):3873. https://doi.org/10.3390/ijerph16203873
  28. Carabajal M, Levin L, Albertó E, Lechner B. Effect of co-cultivation of two Pleurotus species on lignocellulolytic enzyme production and mushroom fructification. Int Biodeterior. 2012; 66(1):71-76. https://doi.org/10.1016/j.ibiod.2011.11.002.
  29. Rajendran R, Sundaram SK, Sridevi BV, Prabhavath P, Gopi V. Biodetoxification of azo dye containing textile effluent through adapted fungal strains. J Environ Sci Technol. 2012; 5(1):29-41. https://doi.org/10.3923/jest.2012.29.41
  30. Yang X, Wang J, Zhao X, Wang Q, Xue R. Increasing manganese peroxidase production and biodecolorization of triphenylmethane dyes by novel fungal consortium. Bioresour Technol. 2013; 102(22):10535-10541. https://doi.org/10.1016/j.biortech.2011.06.034.
  31. FEDNA. Paja de cereales y cebada. Fundación Española para el desarrollo de la nutrición Animal: España; 2019. http://www.fundacionfedna.org/ingredientes_para_piensos/paja-de-cereales-trigo-y-cebada.
  32. Castillo DA, Viteri PA, Viteri SE. Desarrollo y evaluación de un inóculo de hongos celulolíticos. Rev UDCA Actual. Divulg. Cient. 2015; 18(1):217-226. https://doi.org/10.31910/rudca.v18.n1.2015.476.
  33. Dwivedi UN, Singh P, Pandey VP, Kumar A. Structure-function relationship among bacterial, fungal and plant laccases. J Mol Catal B Enzym. 2011; 68(2):117-128. https://doi.org/10.1016/j.molcatb.2010.11.002.

Sistema OJS 3.4.0.3 - Metabiblioteca |