Skip to main navigation menu Skip to main content Skip to site footer

Immunohistochemical localization of transient receptor potential vanilloid-type 5 in ameloblasts of Swiss mice

Localización inmunohistoquímica de receptores de potencial transitorio tipo vaniloide 5 en ameloblastos de ratones Swiss



How to Cite
Simancas-Escorcia, V. H., Díaz-Caballero, A., & Martinez-Martinez, A. . (2024). Immunohistochemical localization of transient receptor potential vanilloid-type 5 in ameloblasts of Swiss mice. Journal MVZ Cordoba, 27(3), e2681. https://doi.org/10.21897/rmvz.2681

Dimensions
PlumX
Victor Hugo Simancas-Escorcia
Antonio Díaz-Caballero
Adel Martinez-Martinez

Victor Hugo Simancas-Escorcia,

Universidad del Sinú-Cartagena. Grupo de Investigación GENOMA. Cartagena, Colombia.  


Antonio Díaz-Caballero,

Universidad de Cartagena, Facultad de Odontología, Grupo Interdisciplinario de Investigaciones y Tratamientos Odontológicos Universidad de Cartagena (GITOUC), Cartagena, Colombia.


Adel Martinez-Martinez,

Universidad de Cartagena, Facultad de Odontología, Grupo Interdisciplinario de Investigaciones y Tratamientos Odontológicos Universidad de Cartagena (GITOUC), Cartagena, Colombia.


Objective. To determine the localization of transient receptor potential vanilloid 5 (TRPV5) in the ameloblasts of Swiss mice. Materials and methods. In vitro experimental study where paraffin sections of 12 continuously growing incisors of 7-day-old male Swiss mice were analyzed. Developmental stages of dental enamel formation were identified by hematoxylin-eosin staining. Immunodetection of the transient receptor potential vanilloid 5 was performed using the primary polyclonal antibody anti-TRPV5. Observations were carried out using a Leica DM 500 microscope. Results. The different stages involved in the formation of dental enamel were identified, including the secretory and maturation stages. In them, it was evidenced that the ameloblasts were elongated cells with oval nuclei in a proximal position and with developed areas of medial and distal secretion. TRPV5 immunolabeling was visualized in the cell membrane and cytoplasm of the secretory and maturation ameloblasts of all mice tested. TRPV5s were also immunolocalized in odontoblasts, vascular endothelium, and pulp cells. Conclusions. The transient receptor potential vanilloid 5 is located on the secretory and maturing ameloblasts of Swiss mice. In particular, TRPV5s are immunodetected in odontoblasts, vascular endothelium, and dental pulp cells.


Article visits 541 | PDF visits


Downloads

Download data is not yet available.
  1. Thompson VP. The tooth: An analogue for biomimetic materials design and processing. Dent Mater. 2020; 36(1):25-42. https://doi.org/10.1016/j.dental.2019.08.106
  2. Bronckers AL. Ion Transport by Ameloblasts during Amelogenesis. J Dent Res. 2017; 96(3):243-253. https://doi.org/10.1177/0022034516681768
  3. Eckstein M, Aulestia FJ, Nurbaeva MK, Lacruz RS. Altered Ca2+ signaling in enamelopathies. Biochim Biophys Acta Mol Cell Res. 2018; 1865(11 Pt B):1778-1785. https://doi.org/10.1016/j.bbamcr.2018.04.013
  4. Kim HE, Hong JH. The overview of channels, transporters, and calcium signaling molecules during amelogenesis. Arch Oral Biol. 2018; 93:47-55. https://doi.org/10.1016/j.archoralbio.2018.05.014
  5. Simmer JP, Papagerakis P, Smith CE, Fisher DC, Rountrey AN, Zheng L, Hu JC. Regulation of dental enamel shape and hardness. J Dent Res. 2010; 89(10):1024-38. https://doi.org/10.1177/0022034510375829
  6. Peng JB, Suzuki Y, Gyimesi G, Hediger MA. TRPV5 and TRPV6 Calcium-Selective Channels. In: Kozak JA, Putney JW Jr, editors. Calcium Entry Channels in Non-Excitable Cells. Boca Raton (FL): CRC Press/Taylor & Francis; 2018. https://doi.org/10.1201/9781315152592-13
  7. Simancas-Escorcia V, Guarapo AEN, Camargo MGA de. Genes involucrados en la amelogénesis imperfecta. Parte I. Rev Fac Odontol Univ Antioq. 2018; 30(1):105-120. https://dx.doi.org/10.17533/udea.rfo.v30n1a10
  8. National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. Guide for the Care and Use of Laboratory Animals. 8th edition. Washington (DC): National Academies Press (US); 2011. https://doi.org/10.17226/12910
  9. Na T, Peng JB. TRPV5: a Ca(2+) channel for the fine-tuning of Ca(2+) reabsorption. Handb Exp Pharmacol. 2014; 222:321-357. https://doi.org/10.1007/978-3-642-54215-2_13
  10. So CL, Milevskiy MJG, Monteith GR. Transient receptor potential cation channel subfamily V and breast cancer. Lab Invest. 2020; 100(2):199-206. https://doi.org/10.1038/s41374-019-0348-0
  11. Robertson SYT, Wen X, Yin K, Chen J, Smith CE, Paine ML. Multiple Calcium Export Exchangers and Pumps Are a Prominent Feature of Enamel Organ Cells. Front Physiol. 2017; 8:336. https://doi.org/10.3389/fphys.2017.00336
  12. Harada H, Otsu K. Microdissection and Isolation of Mouse Dental Epithelial Cells of Continuously Growing Mouse Incisors. Methods Mol Biol. 2019; 1922:3-11. https://doi.org/10.1007/978-1-4939-9012-2_1
  13. Ida-Yonemochi H, Otsu K, Harada H, Ohshima H. Functional Expression of Sodium-Dependent Glucose Transporter in Amelogenesis. J Dent Res. 2020; 99(8):977-986. https://doi.org/10.1177/0022034520916130
  14. Eckstein M, Lacruz RS. CRAC channels in dental enamel cells. Cell Calcium. 2018; 75:14-20. https://doi.org/10.1016/j.ceca.2018.07.012
  15. Simancas-Escorcia V, Berdal A, Díaz-Caballero A. Caracterización fenotípica del síndrome amelogénesis imperfecta–nefrocalcinosis: una revisión. Duazary. 2019; 16(1):129. https://doi.org/10.21676/2389783X.2531
  16. Van der Wijst J, van Goor MK, Schreuder MF, Hoenderop JG. TRPV5 in renal tubular calcium handling and its potential relevance for nephrolithiasis. Kidney Int. 2019; 96(6):1283-1291. https://doi.org/10.1016/j.kint.2019.05.029
  17. Nie M, Bal MS, Yang Z, Liu J, Rivera C, Wenzel A, Beck BB, Sakhaee K, Marciano DK, Wolf MT. Mucin-1 Increases Renal TRPV5 Activity In Vitro, and Urinary Level Associates with Calcium Nephrolithiasis in Patients. J Am Soc Nephrol. 2016; 27(11):3447-3458. https://doi.org/10.1681/ASN.2015101100
  18. Diaz Rojas KA, Simancas-Escorcia V. Caracterización fenotípica del Síndrome de Raine. Cienc Salud Virtual. 2019; 11(2):131–142. https://doi.org/10.22519/21455333.1267
  19. Simancas-Escorcia VH, Natera-Guarapo AE, Acosta de Camargo MG. Genes involucrados en la Amelogénesis Imperfecta. Parte II. Rev Fac Odontol Univ Antioquia. 2019; 30(2). https://doi.org/10.17533/udea.rfo.v30n2a9
  20. Hossain MZ, Bakri MM, Yahya F, Ando H, Unno S, Kitagawa J. The Role of Transient Receptor Potential (TRP) Channels in the Transduction of Dental Pain. Int J Mol Sci. 2019; 20(3):526. https://doi.org/10.3390/ijms20030526
  21. Simancas-Escorcia VH. Fisiopatología de los odontoblastos: una revisión. Duazary. 2019; 16(3):87–103. https://doi.org/10.21676/2389783X.2971
  22. Cho YS, Ryu CH, Won JH, Vang H, Oh SB, Ro JY, Bae YC. Rat odontoblasts may use glutamate to signal dentin injury. Neuroscience. 2016; 335:54-63. https://doi.org/10.1016/j.neuroscience.2016.08.029
  23. Kim JH, Won J, Oh SB. Expression of CaV3.1 T-type Calcium Channels in Acutely Isolated Adult Rat Odontoblasts. Arch Oral Biol. 2020; 118:104864. https://doi.org/10.1016/j.archoralbio.2020.104864
  24. Baylie RL, Brayden JE. TRPV channels and vascular function. Acta Physiol (Oxf). 2011; 203(1):99-116. https://doi.org/10.1111/j.1748-1716.2010.02217.x

Sistema OJS 3.4.0.3 - Metabiblioteca |